Publications by authors named "Cairong Zhong"

Terpene synthases (TPSs) play a crucial role in the synthesis of terpenoids that contribute to the scent profiles of flowers. However, few studies report the genome-wide analysis of s gene in var. and their expression pattern in response to methyl jasmonate (MeJA).

View Article and Find Full Text PDF

Although gene loss is common in evolution, it remains unclear whether it is an adaptive process. In a survey of seven major mangrove clades that are woody plants in the intertidal zones of daily environmental perturbations, we noticed that they generally evolved reduced gene numbers. We then focused on the largest clade of Rhizophoreae and observed the continual gene set reduction in each of the eight species.

View Article and Find Full Text PDF

Whole-genome duplication (WGD), or polyploidy, events are widespread and significant in the evolutionary history of angiosperms. However, empirical evidence for rediploidization, the major process where polyploids give rise to diploid descendants, is still lacking at the genomic level. Here we present chromosome-scale genomes of the mangrove tree Sonneratia alba and the related inland plant Lagerstroemia speciosa.

View Article and Find Full Text PDF
Article Synopsis
  • Nypa fruticans, a mangrove palm with origins tracing back to the Late Cretaceous, is studied for its adaptation to intertidal environments and palm evolution.
  • A chromosome-level genome assembly revealed a whole-genome duplication in the palm ancestor about 89 million years ago, confirming the unique traits of palm species.
  • The study highlights low mutation rates and strong purifying selection in N. fruticans, showing ancient gene retention and adaptations like waterlogging tolerance, which contribute to its stability and intertidal life.
View Article and Find Full Text PDF

Ecological restoration of mangrove ecosystems that became susceptible to recent habitat perturbations is crucial for tropical coast conservation. The white mangrove Laguncularia racemosa, a pioneer species inhabiting intertidal environments of the Atlantic East Pacific (AEP) region, has been used for reforestation in China for decades. However, the molecular mechanisms underlying its fast growth and high adaptive potential remain unknown.

View Article and Find Full Text PDF

Unlabelled: Mangroves are adapted to intertidal zones, which present extreme environmental conditions. WRKYs are among the most prominent transcription factors (TFs) in higher plants and act through various interconnected networks to regulate responses to multiple abiotic stressors. Here, based on omic data, we investigated the landscape and evolutionary patterns of WRKYs in the main mangrove genus .

View Article and Find Full Text PDF

In the conventional view, species are separate gene pools delineated by reproductive isolation (RI). In an alternative view, species may also be delineated by a small set of 'speciation genes' without full RI, a view that has gained broad acceptance. A recent survey, however, suggested that the extensive literature on 'speciation with gene flow' is mostly (if not all) about exchanges in the early stages of speciation.

View Article and Find Full Text PDF

The haptophyte is considered as a promising source for food supplements due to its rich fucoxanthin and polyunsaturated fatty acids content. Here, the mitochondrial genome (mitogenome) was sequenced using a combination of Illumina and PacBio sequencing platforms. This 39,258 bp circular mitogenome has a total of 46 genes, including 20 protein-coding genes, 24 tRNA genes and two rRNA genes.

View Article and Find Full Text PDF

has a strong salt tolerance and can grow in saline and alkaline coastal and inland habitats. This study investigated the physiological and molecular responses of to high salinity by analyzing the changes in plant phytohormones and antioxidant activity, including their differentially expressed genes (DEGs) under similar high-salinity conditions. High salinity significantly affected proline (Pro) and hydrogen peroxide (HO) in seedlings, increasing Pro and HO contents by 290.

View Article and Find Full Text PDF

Adaptation to new environments is a key evolutionary process which presumably involves complex genomic changes. Mangroves, a collection of approximately 80 woody plants that have independently invaded intertidal zones >20 times, are ideal for studying this process. We assembled near-chromosome-scale genomes of three Xylocarpus species as well as an outgroup species using single-molecule real-time sequencing.

View Article and Find Full Text PDF

How plants adapt and diverge in extreme environments is a key question of plant evolution and ecology. Mangrove invasion of intertidal environments is facilitated by adaptive phenotypes such as aerial roots, salt-secreting leaf, and viviparity, and genomic mechanisms including whole genome duplication and transposable element number reduction. However, a number of mangroves lack these typical phenotypes.

View Article and Find Full Text PDF
Article Synopsis
  • Genomic studies are advancing to analyze entire communities, focusing on the ~70 species of mangroves that dominate tropical coastal ecosystems, and researchers have sequenced genomes of 32 mangrove species along with 30 other related species.
  • The findings indicate that mangroves have independently originated 27 times, but despite this, there is only a minor increase in species diversity due to common extinction, possibly linked to historical sea-level changes.
  • Human activities are likely to worsen the effects of future sea-level rises, raising concerns about the irreversible impacts on mangrove ecosystems and coastal biodiversity.
View Article and Find Full Text PDF

Whole-genome duplication (WGD) is believed to increase the chance of adaptation to a new environment. This conjecture may apply particularly well to new environments that are not only different but also more variable than ancestral habitats. One such prominent environment is the interface between land and sea, which has been invaded by woody plants, collectively referred as mangroves, multiple times.

View Article and Find Full Text PDF

Historic climate changes drive geographical populations of coastal plants to contract and recover dynamically, even die out completely. Species suffering from such bottlenecks usually lose intraspecific genetic diversity, but how do these events influence population subdivision patterns of coastal plants? Here, we investigated this question in the typical coastal plant: mangrove species Aegiceras corniculatum. Inhabiting the intertidal zone of the tropical and subtropical coast of the Indo-West Pacific oceans, its populations are deemed to be greatly shaped by historic sea-level fluctuations.

View Article and Find Full Text PDF

Tropical plants have adapted to strong solar ultraviolet (UV) radiation. Here we compare molecular responses of two tropical mangroves and to high-dose UV-B. Whole-genome bisulfate sequencing indicates that high UV-B induced comparable hyper- or hypo-methylation in three sequence contexts (CG, CHG, and CHH, where H refers to A, T, or C) in but mainly CHG hypomethylation in .

View Article and Find Full Text PDF

is a native mangrove species found in China. It is fast growing and highly adaptable for mangrove afforestation, but suffered great damage by chilling event once introduced to high latitude area. To understand the response mechanisms under chilling stress, physiological and transcriptomic analyses were conducted.

View Article and Find Full Text PDF

Mangroves have colonised extreme intertidal environments characterised by high salinity, hypoxia and other abiotic stresses. Aegiceras corniculatum, a pioneer mangrove species that has evolved two specialised adaptive traits (salt secretion and crypto-vivipary) is an attractive ecological model to investigate molecular mechanisms underlying adaptation to intertidal environments. We assembled de novo a high-quality reference genome of A.

View Article and Find Full Text PDF

Here, we describe, illustrate and compare a new natural hybrid, Sonneratia × zhongcairongii Y. S. Wang & S.

View Article and Find Full Text PDF

Sequencing multiple species that share the same ecological niche may be a new frontier for genomic studies. While such studies should shed light on molecular convergence, genomic-level analyses have been unsuccessful, due mainly to the absence of empirical controls. Woody plant species that colonized the global tropical coasts, collectively referred to as mangroves, are ideal for convergence studies.

View Article and Find Full Text PDF

Background: Mangroves have adapted to intertidal zones - the interface between terrestrial and marine ecosystems. Various studies have shown adaptive evolution in mangroves at physiological, ecological, and genomic levels. However, these studies paid little attention to gene regulation of salt adaptation by transcriptome profiles.

View Article and Find Full Text PDF

Unlabelled: Allopatric speciation requiring an unbroken period of geographical isolation has been the standard model of neo-Darwinism. While doubts have been repeatedly raised, strict allopatry without any gene flow remains a plausible mechanism in most cases. To rigorously reject strict allopatry, genomic sequences superimposed on the geological records of a well-delineated geographical barrier are necessary.

View Article and Find Full Text PDF

Insect diversity is an indicator of environmental conditions. Frequent outbreaks of mangrove pests have threatened the fragile mangrove ecosystem in China and the sustainable utilization of mangrove resources. The understanding of mangrove pests, as well as a fundamental knowledge of insect diversity, in mangrove forests in China has been hindered by the difficulty of morphological species delimitation because captured insect specimens are either larvae or incompletely preserved adults.

View Article and Find Full Text PDF

The projected increases in sea levels are expected to affect coastal ecosystems. Tropical communities, anchored by mangrove trees and having experienced frequent past sea level changes, appear to be vibrant at present. However, any optimism about the resilience of these ecosystems is premature because the impact of past climate events may not be reflected in the current abundance.

View Article and Find Full Text PDF

Mangroves invade some very marginal habitats for woody plants-at the interface between land and sea. Since mangroves anchor tropical coastal communities globally, their origin, diversification and adaptation are of scientific significance, particularly at a time of global climate change. In this study, a combination of single-molecule long reads and the more conventional short reads are generated from for the assembly of its genome to a near chromosome level.

View Article and Find Full Text PDF

Background: A large-scale systematical investigation of the influence of Pleistocene climate oscillation on mangrove population dynamics could enrich our knowledge about the evolutionary history during times of historical climate change, which in turn may provide important information for their conservation.

Results: In this study, phylogeography of a mangrove tree Sonneratia alba was studied by sequencing three chloroplast fragments and seven nuclear genes. A low level of genetic diversity at the population level was detected across its range, especially at the range margins, which was mainly attributed to the steep sea-level drop and associated climate fluctuations during the Pleistocene glacial periods.

View Article and Find Full Text PDF