Cancer immunotherapy has emerged as a promising approach to cancer treatment in recent years. The physical and chemical properties of nanocarriers are critical factors that regulate the immune activation of antigen-presenting cells (APCs) in the tumor microenvironment (TME). Herein, we extensively investigated the behavior of liposome nanoparticles (Lipo-NPs) with different elasticities, focusing on their interaction with immune cells and their transport mechanisms from tumors to tumor-draining lymph nodes (tdLNs).
View Article and Find Full Text PDFBackground: Postherpetic neuralgia (PHN) is the most common complication of varicella-zoster infection and tends to occur in older people. All patients treated with a single regimen have not achieved consistent success across all current study protocols, and multimodal combination regimens still need to be explored.
Methods: A total of 111 patients with PHN were randomly divided into drug group (group A), thoracic paravertebral nerve block group (group B), thoracic paravertebral nerve block combined with acupuncture group (group C), with 37 cases in each group.
Objective: We aimed to explore the feasibility of lung ultrasound for perioperative assessment and the optimal effect of lung ultrasound in reducing lung complications during non-cyanotic congenital heart disease (CHD) surgery using ultrafast-track anesthesia.
Methods: Sixty patients were treated at Shenzhen Children's Hospital between 2019 and 2020. Of these, 30 patients in group N had an indication for extubation and ultrafast-track anesthesia after congenital heart surgery; the tracheal catheter was removed, and the patients were sent to the cardiac intensive care unit (CICU) for further monitoring and treatment.
One of the major causes of immunotherapy resistance is the loss of major histocompatibility complex class I (MHC-I) molecules in tumor cells or the downregulation of the class I antigen presentation pathway. In this study, a novel virus-like nanotherapeutic (siRNA@HCM) is developed via encapsulating nanosized siRNA nanoparticles in a hybrid membrane comprising a personalized tumor cell membrane and a universal 293T membrane expressing the mutant vesicular stomatitis virus glycoprotein (mVSV-G). Upon intravenous administration, siRNA@HCM accumulates at the tumor site and provides two potent driving forces for antitumor immunity.
View Article and Find Full Text PDFChemodynamic therapy is a promising tumor treatment strategy. However, it remains a great challenge to overcome the unavoidable off-target damage to normal tissues. In this work, it is discovered that magnetoferritin (M-HFn, biomimic peroxidase) can form nanocomplexes with glucose oxidase (GOD) in the presence of glucose, thus inhibiting the enzyme activity of GOD.
View Article and Find Full Text PDFCell membrane-cloaked nanoparticles are exploited as a promising drug carrier to enhance circulation, accumulation, penetration into tumor sites and cellular internalization. However, the effect of physicochemical properties (e.g.
View Article and Find Full Text PDFBiocatalytic systems based on enzyme cascade reactions have attracted growing interest in the field of biocatalytic medicine. However, it is a major challenge to reasonably construct enzyme cascade reactions with high stability, selectivity, and catalytic efficiency for the in vivo biocatalytic application. Herein, two-in-one engineered glucose oxidase (GOx-Fe ) is fabricated by a biomineralization strategy, through which a nanozyme (Fe NP) is anchored within the inner cavity of GOx.
View Article and Find Full Text PDFBackground: Recent studies have reported that costoclavicular blocks (CCBs) can consistently block almost all branches of the brachial plexus while sparing the phrenic nerve and provide effective analgesia after shoulder surgery. We aimed to compare the efficacy of the CCB with that of the interscalene block (ISB) as the sole blocking technique for shoulder surgery.
Methods: A total of 212 patients undergoing elective arthroscopic shoulder surgery were randomized to receive an ISB or CCB based on a non-inferiority design.
Due to the heterogeneity of a tumor, the tumor vascular interruption-based therapy has become an ideal treatment strategy. Herein, artificial nanoplatelets are reported to induce selective thrombosis in tumor vessels, which can achieve rapid and large-scale necrosis of tumor cells. For one, the nanoplatelets are exploited to specially release thrombin into target regions without affecting the established coagulation factors system.
View Article and Find Full Text PDFFungal infections in skin are extremely stubborn and seriously threaten human health. In the process of antifungal treatment, it is a huge challenge that the stratum corneum of the skin and fungal biofilms form the drug transport barrier. Herein, a near-infrared (NIR) laser-propelled parachute-like nanomotor loaded with miconazole nitrate (PNM-MN) is fabricated to enhance transdermal drug delivery for synergistic antifungal therapy.
View Article and Find Full Text PDFOsteoarthritis (OA) is one of the most common joint diseases worldwide and the focus is shifting to disease prevention and the pharmaceutical and surgical treatment of early OA. However, at present few have proven ability to block or delay the progression of OA. Nevertheless, M2 macrophages present an anti-inflammatory function and promote cartilage repair, thereby alleviating OA in mice.
View Article and Find Full Text PDF