With the increase in pollution and improper waste disposal, aquatic ecosystems are experiencing escalating degradation leading to various detrimental effects, including eutrophication and adverse impacts on the health of the population reliant on these water resources. Consequently, microalgae have demonstrated efficacy in nutrient removal, minimal environmental disruption, and superior cost-effectiveness in comparison to traditional treatment methods. Thus, this study aimed to investigate wastewater treatment in an aerobic batch system, using two strains of non-axenic mixotrophic chlorophytes, Chlorella sp.
View Article and Find Full Text PDFProduction of xylitol from lignocellulosic biomass is of interest to modern biorefineries, because this biomass should be processed into a spectrum of chemicals (bio-based products) and not only energy. The isolation of new yeast strains capable of efficiently converting xylose into xylitol and withstanding inhibitors released from biomass hydrolysis can contribute to making its production feasible in biorefineries. Forty-three out of 128 yeast strains isolated from the gut of Passalidae beetles were capable of assimilating xylose as the sole carbon source.
View Article and Find Full Text PDFHere, we present the draft genome sequence of Kluyveromyces marxianus CCT 7735 (UFV-3), including the eight chromosomes and the mitochondrial genomic sequences.
View Article and Find Full Text PDFThe yeast Kluyveromyces marxianus is a convenient host for industrial synthesis of biomolecules. However, despite its potential, there are few studies reporting the expression of heterologous proteins using this yeast. Here, we report expression of a dengue virus protein in K.
View Article and Find Full Text PDFIn several organisms used for recombinant protein production, integration of the expression cassette into the genome depends on site-specific recombination. In general, the yeast Kluyveromyces lactis shows low gene-targeting efficiency. In this work, two K.
View Article and Find Full Text PDFThe fermentation of both glucose and xylose is important to maximize ethanol yield from renewable biomass feedstocks. In this article, we analyze growth, sugar consumption, and ethanol formation by the yeast Kluyveromyces marxianus UFV-3 using various glucose and xylose concentrations and also under conditions of reduced respiratory activity. In almost all the conditions analyzed, glucose repressed xylose assimilation and xylose consumption began after glucose had been exhausted.
View Article and Find Full Text PDF