Publications by authors named "Caio Fernando Gromboni"

Epigenetic repression has been linked to the regulation of different cell states. In this study, we focus on the influence of this repression, mainly by H3K27me3, over gene expression in muscle cells, which may affect mineral content, a phenotype that is relevant to muscle function and beef quality. Based on the inverse relationship between H3K27me3 and gene expression (, epigenetic repression) and on contrasting sample groups, we computationally predicted regulatory genes that affect muscle mineral content.

View Article and Find Full Text PDF

An interplay between gene expression, mineral concentration, and beef quality traits in Bos indicus muscle has been reported previously under a network approach. However, growing evidence suggested that miRNAs not only modulate gene expression but are also involved with mineral homeostasis. To our knowledge, understanding of the miRNA-gene expression-mineral concentration relationship in mammals is still minimal.

View Article and Find Full Text PDF

Mineral contents in bovine muscle can affect meat quality, growth, health, and reproductive traits. To better understand the genetic basis of this phenotype in Nelore (Bos indicus) cattle, we analysed genome-wide mRNA and miRNA expression data from 114 muscle samples. The analysis implemented a new application for two complementary algorithms: the partial correlation and information theory (PCIT) and the regulatory impact factor (RIF), in which we included the estimated genomic breeding values (GEBVs) for the phenotypes additionally to the expression levels, originally proposed for these methods.

View Article and Find Full Text PDF

Introduction: Real-time polymerase chain reaction (RT-qPCR) is an important tool for analyzing gene expression. However, before analyzing the expression of target genes, it is crucial to normalize the reference genes, in order to find the most stable gene to be used as an endogenous control. A gene that remains stable in all samples under different treatments is considered a suitable normalizer.

View Article and Find Full Text PDF

Mineral content affects the biological processes underlying beef quality. Muscle mineral concentration depends not only on intake-outtake balance and muscle type, but also on age, environment, breed, and genetic factors. To unveil the genetic factors involved in muscle mineral concentration, we applied a pairwise differential gene expression analysis in groups of Nelore steers genetically divergent for nine different mineral concentrations.

View Article and Find Full Text PDF

Iron (Fe) is an essential mineral for metabolism and plays a central role in a range of biochemical processes. Therefore, this study aimed to identify differentially expressed (DE) genes and metabolic pathways in Longissimus dorsi (LD) muscle from cattle with divergent iron content, as well as to investigate the likely role of these DE genes in biological processes underlying beef quality parameters. Samples for RNA extraction for sequencing and iron, copper, manganese, and zinc determination were collected from LD muscles at slaughter.

View Article and Find Full Text PDF

Calcium (Ca) and potassium (K) are essential nutrients in animal nutrition. Furthermore, the Ca content can influence meat tenderness because it is needed by the proteolytic system of calpains and calpastatins, major factors in postmortem tenderization of skeletal muscles. K content, which is needed for muscle contraction, can also affect meat tenderness.

View Article and Find Full Text PDF