Publications by authors named "Caine Smith"

Phosphatidylethanol (PEth) is an alcohol derivative that has been employed as a blood-based biomarker for regular alcohol use. This study investigates the utility of phosphatidylethanol (PEth) as a biomarker for assessing alcohol consumption in post-mortem brain tissue. Using samples from the New South Wales Brain Tissue Resource Centre, we analysed PEth(16:0/18:1) levels in the cerebellum and meninges of individuals with varying histories of alcohol use, including those diagnosed with alcohol use disorder (AUD) and controls.

View Article and Find Full Text PDF

The New South Wales Brain Tissue Resource Centre is a human brain bank that provides top-quality brain tissue for cutting-edge neuroscience research spanning various conditions from alcohol use disorder to neurodegenerative diseases. However, the conventional practice of preserving brain tissue in formalin poses challenges for immunofluorescent staining primarily due to the formalin's tendency, over time, to create cross-links between antigens, which can obscure epitopes of interest. In addition, researchers can encounter issues such as spectral bleeding, limitations in using multiple colors, autofluorescence, and cross-reactivity when working with long-term formalin-fixed brain tissue.

View Article and Find Full Text PDF

Alcohol-related brain injury is characterized by cognitive deficits and brain atrophy with the prefrontal cortex particularly susceptible. White matter in the human brain is lipid rich and a major target of damage from chronic alcohol abuse; yet, there is sparse information on how these lipids are affected. Here, we used untargeted lipidomics as a discovery tool to describe these changes in the prefrontal, middle temporal, and visual cortices of human subjects with alcohol use disorder and controls.

View Article and Find Full Text PDF

Rationale: Matrix-assisted laser desorption ionisation with mass spectrometry imaging (MSI) has seen rapid development in recent years and as such is becoming an important technique for the mapping of biomolecules from the surface of tissues. One key area of development is the optimisation of analyte extraction by using modified matrices or mixes of common ones.

Methods: A series of serial sections were prepared for lipid MSI by either dry coating (sublimation) or by wet spray application of several matrices.

View Article and Find Full Text PDF

Severe stress exposure causes the loss of dendritic spines on cortical pyramidal neurons and induces psychiatric-like symptoms in rodent models. These effects are strongest following early-life stress and are most persistent on apical dendrites. However, the long-term impacts and temporal effects of stress exposure on the human brain remain poorly understood.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is a well-established technique for elucidating the location and relative abundance of a range of biomolecules. More recently, research into this technique has shifted from simple discovery and demonstration of utility to application in biomedical research. Here, we describe a protocol utilizing MALDI-IMS for the spatial mapping of lipids in brain tissue from normal human brains and brains from patients with Alzheimer's disease, in the context of Alzheimer's disease.

View Article and Find Full Text PDF

The use of matrix-assisted laser desorption/ionization, mass spectrometry imaging (MALDI MSI) has rapidly expanded, since this technique analyzes a host of biomolecules from drugs and lipids to N-glycans. Although various sample preparation techniques exist, detecting peptides from formaldehyde preserved tissues remains one of the most difficult challenges for this type of mass spectrometric analysis. For this reason, we have created and optimized a robust methodology that preserves the spatial information contained within the sample, while eliciting the greatest number of ionizable peptides.

View Article and Find Full Text PDF

Background: Binge-like ethanol (EtOH) exposure during the early rat neonatal period results in acute cell loss in specific brain regions, but such acute cell death has not been well established in the hippocampus. Binge alcohol exposure can also result in protein expression changes in the cerebellum that could alter cell fate, but this has not been reported for the hippocampal subregions. This study investigates acute apoptotic cell death in hippocampal regions CA1, CA3, and dentate gyrus (DG) following a binge EtOH exposure on postnatal day (PN) 6, PN8, or PN6 + 8 and the alteration in pro- and anti-apoptotic proteins following a single EtOH binge on PN6.

View Article and Find Full Text PDF