Publications by authors named "Caiming Li"

Background: Healthcare workers are an indispensable part of society, and a healthy mind and body are important to them, but today's exacerbation of psychological problems in healthcare, has attracted the attention of society.

Objective: This study spans two particular phases: the COVID-19 pandemic phase and the full liberalization of epidemic control. To explore trends in the mental health status of healthcare workers, particularly anxiety, depression and sleep quality, and to analyze the influencing factors and inform the development of interventions through data collection over three consecutive years.

View Article and Find Full Text PDF

To investigate impacts of short-clustered maltodextrin (SCMD), trehalose (TH), and guar gum (GUAR) on mediating stabilizations of gluten proteins against cold denaturation, we focused on conformational transformations of gluten protein during frozen storage and its molecular mechanism. Firstly, we found SCMD markedly improved hydration features and decreased the surface hydrophilicity of gluten proteins, with the integrity and continuity of gluten network improving after 8-week frozen storage, compared to TH and GUAR. Furthermore, SCMD and TH addition hindered the conversion of α-helix to disordered β-fold and β-turn, while GUAR did not.

View Article and Find Full Text PDF

is one of the commonly used hosts for heterologous enzyme expression, depending on media rich in carbon, nitrogen, and phosphate sources for optimal growth and enzyme production. Interestingly, our investigation of maltotetraose-forming amylase, a key enzyme for efficient maltotetraose synthesis, revealed that phosphate limitation significantly enhances the growth rate and production of heterologous enzymes in recombinant . Under phosphate-limited conditions in a 15 L fermenter, the enzyme activity reached 679.

View Article and Find Full Text PDF
Article Synopsis
  • Starch has important industrial uses, but its performance is limited by issues like retrogradation and fast digestion.
  • By hydrolyzing native starch with β-amylase, β-limit dextrin (β-LD) and maltose are produced, with β-LD having a stable structure that helps avoid retrogradation and enhances solubility.
  • The review discusses ways to improve the production of β-LD, explore its additional benefits, and expand its applications in food and pharmaceuticals, offering valuable insights for its commercial use.
View Article and Find Full Text PDF

The human body harbors diverse microbial communities essential for maintaining health and influencing disease processes. Droplet microfluidics, a precise and high-throughput platform for manipulating microscale droplets, has become vital in advancing microbiome research. This review introduces the foundational principles of droplet microfluidics, its operational capabilities, and wide-ranging applications.

View Article and Find Full Text PDF

Background: A substantial body of research has demonstrated a notable impact of hot temperatures on mortality from cardiovascular diseases (CVDs). However, a paucity of studies has addressed the influence of sweltering conditions on CVD mortality.

Objective: To investigate the effect of sweltering conditions on mortality from CVD among permanent residents of Huizhou City, using the temperature-humidity index (THI) as an indicator.

View Article and Find Full Text PDF

The in vitro model is widely preferred for digestion research due to its simplicity, reproducibility, and ethical advantages. However, the differences between in vivo and in vitro digestion present challenges. This study first developed an in vitro oral processing system to explore the influence of saliva volume and chewing time on the physicochemical properties of japonica rice (JR), indica rice (IR), and waxy rice (WR).

View Article and Find Full Text PDF

The functional characteristics of starch films are significantly influenced by the amylose content and the distribution of the amylopectin chain length. This work used 1,4-α-glucan branching enzyme to molecularly reconstruct corn, pea, and cassava starch in order to examine the association. Films made of both natural and enzyme-modified starch were produced using the casting method.

View Article and Find Full Text PDF

Mitigating the cold denaturation of gluten protein during frozen storage is crucial for the quality improvement of frozen cereal products. Our previous study observed that starch derivatives, especially short-clustered maltodextrin (SCMD), could significantly improve frozen dough quality, alleviating the deterioration of gluten-network structure. To further reveal the cryoprotection mechanism of SCMD on gluten protein during frozen storage, the modulatory roles of SCMD in the hydration capacity and conformation behavior of gluten protein were explored, in comparison with DE2 maltodextrin (MD) and pregelatinized starch (PGS).

View Article and Find Full Text PDF
Article Synopsis
  • Leaves vary in shape, from simple to complex forms, with Arabidopsis thaliana serving as a key model to study this diversity, especially the factors influencing serration.
  • The boundary regulatory factors CUC2 and CUC3 are crucial for promoting leaf serration, while WOX1 plays a significant role in controlling the number and size of teeth by regulating CUC3 levels.
  • This research reveals that BZR1 interacts with WOX1 to modulate CUC3 expression, forming a complex regulatory mechanism that fine-tunes leaf margin development.
View Article and Find Full Text PDF

The grinding process is one of the key factors affecting the quality of glutinous rice flour (GRF). As an emerging grinding method, semidry grinding aims to solve the problems of the high yield of wastewater in traditional wet grinding and the high content of damaged starch in dry grinding, in which the water content has a great influence on the quality of GRF. However, semidry grinding has not yet been formally put into production due to limitations such as the long time required to adjust the water content of rice grains.

View Article and Find Full Text PDF
Article Synopsis
  • - The rapid digestion of starch in our diet causes spikes in blood sugar, and inhibiting α-amylase can help control these spikes by reducing starch digestibility.
  • - Microbial exopolysaccharides (EPSs), especially those produced by lactic acid bacteria, show promise in inhibiting α-amylase, thereby potentially lowering blood glucose levels and improving glycolipid metabolism.
  • - This review discusses the mechanisms of how microbial EPSs work and suggests their potential use in functional foods and pharmaceuticals to help manage blood sugar and support gut health.
View Article and Find Full Text PDF

Environmentally friendly and non-toxic bio-based adhesives are emerging as the most promising substitutes for petroleum-based adhesives, attracting increasing attention. This work involved the synthesis of a starch-based adhesive for particleboards by grafting diacetone acrylamide (DAAM) onto starch. The graft polymerization was initiated using three different initiators: ammonium persulfate (APS), hydrogen peroxide (HO)/ammonium ferrous sulfate system, and ceric ammonium nitrate (CAN).

View Article and Find Full Text PDF

Non-digestible oligosaccharides are known to exert health-promoting effects. However, the specific mechanisms by which they regulate host physiology remain unclear. Understanding these mechanisms will facilitate the development of non-digestible oligosaccharide compositions that can achieve synergistic effects.

View Article and Find Full Text PDF

γ-Cyclodextrin (γ-CD) is an attractive material among the natural cyclodextrins owing to its excellent properties. γ-CD is primarily produced from starch by γ-cyclodextrin glycosyltransferase (γ-CGTase) in a controlled system. However, difficulty in separation and low conversion rate leads to high production costs for γ-CD.

View Article and Find Full Text PDF

Actinomyces viscous (A. viscous) is well documented as a major cariogenic bacterium in the oral cavity and needs to be inhibited and removed timely. Essential oils (EOs) are recognized as secure antibacterial agents for treating oral diseases, but their volatility and insolubility limit their application.

View Article and Find Full Text PDF

This study investigated the physicochemical structural changes in different types of rice (japonica rice [JR], indica rice [IR], and waxy rice [WR]) during oral digestion and explored the reasons for differences in oral digestion between the three different types. The results showed that, compared with JR (42.41 ± 3.

View Article and Find Full Text PDF

Many α-agarases have been characterized and are utilized for producing agarooligosaccharides through the degradation of agar and agarose, which are considered valuable for applications in the food and medicine industries. However, the catalytic mechanism and product transformation process of α-agarase remain unclear, limiting further enzyme engineering for industrial applications. In this study, an α-agarase from STB14 (Cm-AGA) was employed to degrade agarose oligosaccharides (AGOs) with varying degrees of polymerization (DPs) to investigate the catalytic mechanism of α-agarases.

View Article and Find Full Text PDF

D-allulose, an epimer of D-fructose at C-3 position, is a low-calorie rare sugar with favorable physiochemical properties and special physiological functions, which displays promising perspectives in the food and pharmaceutical industries. Currently, D-allulose is extremely sparse in nature and is predominantly biosynthesized through the isomerization of D-fructose by D-allulose 3-epimerase (DAEase). In recent years, D-allulose 3-epimerase as the key biocatalyst for D-allulose production has received increasing interest.

View Article and Find Full Text PDF
Article Synopsis
  • This study compared how wheat and potato starches behave in low moisture conditions, focusing on their gelatinization and digestion characteristics.
  • Results showed that potato starch was more resistant to digestion, needing less enzyme hydrolysis and requiring more moisture for full gelatinization compared to wheat starch.
  • Microscopy revealed that while wheat starch had a rough texture allowing easier enzyme access, potato starch had smoother particles that made it harder to digest, suggesting its potential use in low-digestibility foods like potato biscuits or chips.
View Article and Find Full Text PDF

The current research in the food industry regarding enzymatic modification to enhance the freeze-thaw (FT) stability of starch is limited. The present study aimed to investigate the FT stability of normal corn starch (NCS) modified using 1,4-α-glucan branching enzyme (GBE) derived from Geobacillus thermoglucosidans STB02. Comprehensive analyses, including syneresis, scanning electron microscopy, and low-field nuclear magnetic resonance, collectively demonstrated the enhanced FT stability of GBE-modified corn starch (GT-NCS-30) in comparison to its native form.

View Article and Find Full Text PDF

Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms.

View Article and Find Full Text PDF

Digital PCR (dPCR) holds immense potential for precisely detecting nucleic acid markers essential for personalized medicine. However, its broader application is hindered by high consumable costs, complex procedures, and restricted multiplexing capabilities. To address these challenges, an all-in-one dPCR system is introduced that eliminates the need for microfabricated chips, offering fully automated operations and enhanced multiplexing capabilities.

View Article and Find Full Text PDF

The effects of various hydrocolloids (guar gum, xanthan gum, and carboxymethyl cellulose) on the texture, rheology, and microstructural properties of modeling clay prepared with cassava starch were investigated. Notably, incorporation of 3 % guar gum and 4 % xanthan gum into starch-based modeling clay resulted in enhancements of 94.12 % and 77.

View Article and Find Full Text PDF

Efficient production of cyclodextrins (CDs) has always been challenging. CDs are primarily produced from starch via cyclodextrin glycosyltransferase (CGTase), which acts on α-1,4 glucosidic bonds; however, α-1,6 glucosidic bonds in starch suppress the enzymatic production of CDs. In this study, a glycogen debranching enzyme from STB09 (SsGDE) was utilized to promote the production of β-CD by hydrolyzing α-1,6 glucosidic bonds.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionibl2301mf72ccis6c7ljcji5j2j4rfhf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once