Importance: Individuals with mild traumatic brain injury (TBI) often report vision problems despite having normal visual acuity and fundus examinations. Diagnostics are needed for these patients.
Objective: To determine if a battery of assessments or machine-learning approaches can aid in diagnosing visual dysfunction in patients with mild TBI.
Heart failure with preserved ejection fraction (HFpEF) is an important, emerging risk factor for dementia, but it is not clear whether HFpEF contributes to a specific pattern of neuroanatomical changes in dementia. A major challenge to studying this is the relative paucity of datasets of patients with dementia, with/without HFpEF, and relevant neuroimaging. We sought to demonstrate the feasibility of using modern data mining tools to create and analyze clinical imaging datasets and identify the neuroanatomical signature of HFpEF-associated dementia.
View Article and Find Full Text PDFAuditory complaints are frequently reported by individuals with mild traumatic brain injury (mTBI) yet remain difficult to detect in the absence of clinically significant hearing loss. This highlights a growing need to identify sensitive indices of auditory-related mTBI pathophysiology beyond pure-tone thresholds for improved hearing healthcare diagnosis and treatment. Given the heterogeneity of mTBI etiology and the diverse peripheral and central processes required for normal auditory function, the present study sought to determine the audiologic assessments sensitive to mTBI pathophysiology at the group level using a well-rounded test battery of both peripheral and central auditory system function.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2023
Crohn's disease (CD) is a debilitating inflammatory bowel disease with no known cure. Computational analysis of hematoxylin and eosin (H&E) stained colon biopsy whole slide images (WSIs) from CD patients provides the opportunity to discover unknown and complex relationships between tissue cellular features and disease severity. While there have been works using cell nuclei-derived features for predicting slide-level traits, this has not been performed on CD H&E WSIs for classifying normal tissue from CD patients vs active CD and assessing slide label-predictive performance while using both separate and combined information from pseudo-segmentation labels of nuclei from neutrophils, eosinophils, epithelial cells, lymphocytes, plasma cells, and connective cells.
View Article and Find Full Text PDFBatch size is a key hyperparameter in training deep learning models. Conventional wisdom suggests larger batches produce improved model performance. Here we present evidence to the contrary, particularly when using autoencoders to derive meaningful latent spaces from data with spatially global similarities and local differences, such as electronic health records (EHR) and medical imaging.
View Article and Find Full Text PDF7T magnetic resonance imaging (MRI) has the potential to drive our understanding of human brain function through new contrast and enhanced resolution. Whole brain segmentation is a key neuroimaging technique that allows for region-by-region analysis of the brain. Segmentation is also an important preliminary step that provides spatial and volumetric information for running other neuroimaging pipelines.
View Article and Find Full Text PDFObjective: To enable interactive visualization of phenome-wide association studies (PheWAS) on electronic health records (EHR).
Materials And Methods: Current PheWAS technologies require familiarity with command-line interfaces and lack end-to-end data visualizations. pyPheWAS Explorer allows users to examine group variables, test assumptions, design PheWAS models, and evaluate results in a streamlined graphical interface.
Diffusion MRI (dMRI) streamline tractography is the gold-standard for estimation of white matter (WM) pathways in the brain. However, the high angular resolution dMRI acquisitions capable of fitting the microstructural models needed for tractography are often time-consuming and not routinely collected clinically, restricting the scope of tractography analyses. To address this limitation, we build on recent advances in deep learning which have demonstrated that streamline propagation can be learned from dMRI directly without traditional model fitting.
View Article and Find Full Text PDFObjective: We examined medical records to determine health conditions associated with dementia at varied intervals prior to dementia diagnosis in participants from the Baltimore Longitudinal Study of Aging (BLSA).
Methods: Data were available for 347 Alzheimer's disease (AD), 76 vascular dementia (VaD), and 811 control participants without dementia. Logistic regressions were performed associating International Classification of Diseases, 9th Revision (ICD-9) health codes with dementia status across all time points, at 5 and 1 year(s) prior to dementia diagnosis, and at the year of diagnosis, controlling for age, sex, and follow-up length of the medical record.
Characterizing relationships between gray matter (GM) and white matter (WM) in early Alzheimer's disease (AD) would improve understanding of how and when AD impacts the brain. However, modeling these relationships across brain regions and longitudinally remains a challenge. Thus, we propose extending joint independent component analysis (jICA) into spatiotemporal modeling of regional cortical thickness and WM bundle volumes leveraging multimodal MRI.
View Article and Find Full Text PDFAlong with the increasing availability of electronic medical record (EMR) data, phenome-wide association studies (PheWAS) and phenome-disease association studies (PheDAS) have become a prominent, first-line method of analysis for uncovering the secrets of EMR. Despite this recent growth, there is a lack of approachable software tools for conducting these analyses on large-scale EMR cohorts. In this article, we introduce pyPheWAS, an open-source python package for conducting PheDAS and related analyses.
View Article and Find Full Text PDFReproducible identification of white matter pathways across subjects is essential for the study of structural connectivity of the human brain. One of the key challenges is anatomical differences between subjects and human rater subjectivity in labeling. Labeling white matter regions of interest presents many challenges due to the need to integrate both local and global information.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2021
Resting-state functional MRI (rsfMRI) provides important information for studying and mapping the activities and functions of the brain. Conventionally, rsfMRIs are often registered to structural images in the Euclidean space without considering cortical geometry. Meanwhile, a surface-based representation offers a relaxed coordinate chart, but this still requires surface registration for group-wise data analysis.
View Article and Find Full Text PDFMild traumatic brain injury (mTBI) is a complex syndrome that affects up to 600 per 100,000 individuals, with a particular concentration among military personnel. About half of all mTBI patients experience a diverse array of chronic symptoms which persist long after the acute injury. Hence, there is an urgent need for better understanding of the white matter and gray matter pathologies associated with mTBI to map which specific brain systems are impacted and identify courses of intervention.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2021
Prior neuroimaging studies have demonstrated isolated structural and connectivity changes in the brain due to Alzheimer's Disease (AD). However, how these changes relate to each other is not well understood. We present a preliminary study to begin to fill this gap by leveraging joint independent component analysis (jICA).
View Article and Find Full Text PDFPurpose: Diffusion-weighted imaging allows investigators to identify structural, microstructural, and connectivity-based differences between subjects, but variability due to session and scanner biases is a challenge.
Methods: To investigate DWI variability, we present MASiVar, a multisite data set consisting of 319 diffusion scans acquired at 3 T from b = 1000 to 3000 s/mm across 14 healthy adults, 83 healthy children (5 to 8 years), three sites, and four scanners as a publicly available, preprocessed, and de-identified data set. With the adult data, we demonstrate the capacity of MASiVar to simultaneously quantify the intrasession, intersession, interscanner, and intersubject variability of four common DWI processing approaches: (1) a tensor signal representation, (2) a multi-compartment neurite orientation dispersion and density model, (3) white-matter bundle segmentation, and (4) structural connectomics.
Brain atlases have proven to be valuable neuroscience tools for localizing regions of interest and performing statistical inferences on populations. Although many human brain atlases exist, most do not contain information about white matter structures, often neglecting them completely or labelling all white matter as a single homogenous substrate. While few white matter atlases do exist based on diffusion MRI fiber tractography, they are often limited to descriptions of white matter as spatially separate "regions" rather than as white matter "bundles" or fascicles, which are well-known to overlap throughout the brain.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
March 2020
Some veterans with a history of mild traumatic brain injury (mTBI) have reported experiencing auditory and visual dysfunction that persist beyond the acute phase of the incident. The etiology behind these symptoms is difficult to characterize, since mTBI is defined by negative imaging findings on current clinical imaging. There are several competing hypotheses that could explain functional deficits; one example is shear injury, which may manifest in diffusion-weighted magnetic resonance (MR) imaging (DWI).
View Article and Find Full Text PDFMultiple instance learning (MIL) is a supervised learning methodology that aims to allow models to learn instance class labels from bag class labels, where a bag is defined to contain multiple instances. MIL is gaining traction for learning from weak labels but has not been widely applied to 3D medical imaging. MIL is well-suited to clinical CT acquisitions since (1) the highly anisotropic voxels hinder application of traditional 3D networks and (2) patch-based networks have limited ability to learn whole volume labels.
View Article and Find Full Text PDFBrain imaging analysis on clinically acquired computed tomography (CT) is essential for the diagnosis, risk prediction of progression, and treatment of the structural phenotypes of traumatic brain injury (TBI). However, in real clinical imaging scenarios, entire body CT images (e.g.
View Article and Find Full Text PDF