Publications by authors named "Cailean Q Pritchard"

A novel nanocomposite comprised of cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidized cellulose nanofibers (TOCNFs) was prepared through solution casting to evaluate potential improvements of the mechanical performance compared to individual reinforcements alone. Such materials can be implemented as mechanical reinforcements in polymer composites, especially when less weight is desired. Dissipative particle dynamics (DPD) simulations, in combination with polarized light microscopy and atomic force microscopy, were analyzed to evaluate the morphology of these combined cellulose nanomaterial (CNM) films.

View Article and Find Full Text PDF

Hypothesis: Radial capillary flow in evaporating droplets carry suspended nanoparticles to its periphery where they are deposited and form a coffee-ring. Rod-like nanoparticles seeking to minimize their capillary energy will align with their long-axis parallel to the contact line. Particles exhibiting electrostatic repulsion, such as cellulose nanocrystals (CNCs), establish a competition between capillary flow-induced impingement against a growing coffee-ring and entropic minimization leading to enhanced particle mobility.

View Article and Find Full Text PDF

Continuous flow chemistry has the potential to greatly improve efficiency in the synthesis of active pharmaceutical ingredients (APIs); however, the optimization of these processes can be complicated by a large number of variables affecting reaction success. In this work, a screening design of experiments was used to compare computational fluid dynamics (CFD) simulations with experimental results. CFD simulations and experimental results both identified the reactor residence time and reactor temperature as the most significant factors affecting product yield for this reaction within the studied design space.

View Article and Find Full Text PDF