Publications by authors named "Caihong Fang"

Herein, we grew in situ Co-incorporated NiOSO-NiMoO heterostructures on nickel foam (Co-NiSMoO/NF). The introduction of S and MoO into CoNi-ZIF precursor leads to the compositional and electronic reconstruction, resulting in the Co-NiSMoO/NF nanostructures. The attractive features in the morphology, composition, and electronic structure cooperatively endow them with high electrocatalytic performances.

View Article and Find Full Text PDF

Purpose: Integrin β5 (ITGB5) is an integrin β subunit member widely expressed in the human bodies, especially in cancer cells and tissues, which is a key factor in promoting tumor metastasis. In this study we investigated the differential expression of ITGB5 in tongue squamous cell carcinoma (TSCC), especially in those with lymph node metastasis, and revealed the possible mechanism.

Methods: The expression of ITGB5 in TSCC was analyzed by database and verified by immunohistochemistry through 135 TSCC patients' tissue sections from Sun Yat-sen Memorial Hospital and Guangzhou First People's Hospital.

View Article and Find Full Text PDF

Photocatalytic for hydrogen peroxide (HO) production is thought as a promising technology owing to its clean and green properties with the cheap and easily available raw materials of HO and O. Herein, Pt/g-CN Schottky junction photocatalysts with ultralow Pt contents (0.025-0.

View Article and Find Full Text PDF

Excessive differentiation of osteoclasts contributes to the disruption of bone homeostasis in inflammatory bone diseases. Methyltransferase-like 3 (METTL3), the core methyltransferase that installs an N6-methyladenosine (mA) modification on RNA, has been reported to participate in bone pathophysiology. However, whether METTL3-mediated mA affects osteoclast differentiation in inflammatory conditions remains unelucidated.

View Article and Find Full Text PDF

Abnormal increases in osteoclast differentiation and activity contribute to excessive bone resorption in inflammatory bone diseases. The specific mA-binding protein YT521-B homology domain family 1 (YTHDF1) participates in many physiopathological processes by regulating mRNA stability or translation. However, whether YTHDF1 is involved in the regulation of inflammatory osteoclastogenesis remains a mystery.

View Article and Find Full Text PDF

We precisely synthesized two-dimensional (2D) PtPdCu nanostructures with the morphology varying from porous circular nanodisks (CNDs) and triangular nanoplates (TNPs) to triangular nanoboomerangs (TNBs) by tuning the molar ratios of metal precursors. The PtPdCu trimetallic nanoalloys exhibit superior electrocatalytic performances to alcohol oxidation reactions due to their unique structural features and the synergistic effect. Impressively, PtPdCu TNBs exhibit a high mass activity of 3.

View Article and Find Full Text PDF

Aberrant elevation of osteoclast differentiation and function is responsible for disrupting bone homeostasis in various inflammatory bone diseases. YTH domain family 2 (YTHDF2) is a well-known mA-binding protein that plays an essential role in regulating cell differentiation and inflammatory processes by mediating mRNA degradation. However, the regulatory role of YTHDF2 in inflammatory osteoclast differentiation remains unelucidated.

View Article and Find Full Text PDF

In the past few decades, Pt-based electrocatalysts have attracted great interests due to their high catalytic performances toward the direct alcohol fuel cell (DAFC). However, the high cost, poor stability, and the scarcity of Pt have markedly hindered their large-scale utilization in commerce. Therefore, enhancing the activity and durability of Pt-based electrocatalysts, reducing the Pt amount and thus the cost of DAFC have become the keys for their practical applications.

View Article and Find Full Text PDF

Ruthenium nanocrystals with small size and special morphology are of great interest in various catalytic reactions due to their high activities. However, it is still a great challenge to downsize these nanocatalysts to a sub-nano scale (<2 nm). Herein, we reported a synthesis of ultrasmall size and uniform Ru nanoparticles through a rapid one-pot method.

View Article and Find Full Text PDF

Plasmonic nanostructures with large absorption areas under resonant excitation have been utilized extensively in photon-assisted applications. In this work, dodecahedral Au nanobowls were first prepared by an easy and template-free method only through the introduction of H PtCl and I during the growth procedure. The Au nanobowls show electron-field enhancement due to the high curvature of the bowl edge, the open region, and dodecahedral morphology.

View Article and Find Full Text PDF

Selective reduction of ketone/aldehydes to alcohols is of great importance in green chemistry and chemical engineering. Highly efficient catalysts are still demanded to work under mild conditions, especially at room temperature. Here we present a synergistic function of single-atom palladium (Pd) and nanoparticles (Pd) on TiO for highly efficient ketone/aldehydes hydrogenation to alcohols at room temperature.

View Article and Find Full Text PDF

In the synthesis of Au/Pd bimetallic nanocrystals, a layer-by-layer growth is favored, owing to the low bonding energy between Pd atoms ( E) in comparison with E, resulting in homogeneous core/shell nanostructures. Herein, we demonstrate designed synthetic tactics to unconventional Au/Pd heterostructures through a deposition-dominant growth pathway of the newly reduced Pd atoms, which break the intrinsically favored layer-by-layer growth. Pd thus grows on Au seeds in a heterogeneous nucleation manner.

View Article and Find Full Text PDF

Multifunctional metal nanostructures with a hollow feature, especially for nanoframes, are highly attractive owing to their high surface-to-volume ratios. However, pre-grown metal nanocrystals are always involved during the preparation procedure, and a synthetic strategy without the use of a pre-grown template is still a challenge. In this article, a template-free strategy is reported for the preparation of novel AuPt alloy nanoframes through simply mixing HAuCl and H PtCl under mild conditions.

View Article and Find Full Text PDF

Synthesis of hollow metal nanocrystals (NCs) is greatly attractive for their high active surface areas, which gives rise to excellent catalytic activity. Taking PdPt alloy nanostructure as an example, we designed a synthetic tactic for the preparation of hollow metal nanostructures by delicate control over the difference in the reduction kinetic of metal precursors. At a high reduction rate difference, the Pd layer forms from HPdCl and is subsequently etched, leading to the formation of a hollow space.

View Article and Find Full Text PDF

Au nanobipyramids (NBPs) have attracted great attention because of their unique localized surface plasmon resonance properties. However, the current growth methods always have low yield or suffer tedious process. Developing new ways to direct synthesis of high-yield Au NBPs using common agents is therefore desirable.

View Article and Find Full Text PDF

PtAg alloyed nanostructural catalysts were firstly prepared by co-reduction of AgNO3 and H2PtCl6 precursors in growth solution using a seed-mediated method. By simply changing the molar ratio of the metal precursors, the morphologies of the porous alloyed nanocrystals can be tuned from multipetals to multioctahedra. Simultaneously, the alloy composition can be varied from Pt76Ag24 to Pt66Ag34.

View Article and Find Full Text PDF

Gold nanorods have attracted intensive interest owing to their localized surface plasmon resonance properties and enormous potential applications. The transverse plasmon of Au nanorods is usually weaker than the longitudinal one, hampering certain plasmonic applications. Herein we report on the intensification of the transverse plasmon resonance by coating TiO2 onto Au nanorods.

View Article and Find Full Text PDF

Absorption-dominant small Au nanorods with diameters of less than 10 nm are prepared using a facile seed-mediated growth method. The diameters of the small gold nanorods range from 6 to 9 nm, and their lengths vary from 16 to 45 nm. Their aspect ratios can be tailored from 2.

View Article and Find Full Text PDF

Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive.

View Article and Find Full Text PDF

With the development of Au nanorods for a number of biomedical applications, understanding their cellular responses has become increasingly important. In this study, we systematically evaluated the cellular uptake behaviour and cytotoxicity of Au nanorods with various surface coatings, including organic cetyltrimethylammonium bromide (CTAB), poly(sodium 4-styrenesulfonate) (PSS), and poly(ethylene glycol) (PEG), and inorganic mesoporous silica (mSiO2), dense silica (dSiO2), and titanium dioxide (TiO2). The cellular behaviour of Au nanorods was found to be highly dependent on both the surface coating and the cell type.

View Article and Find Full Text PDF

Hybrid nanostructures composed of semiconductor and plasmonic metal components are receiving extensive attention. They display extraordinary optical characteristics that are derived from the simultaneous existence and close conjunction of localized surface plasmon resonance and semiconduction, as well as the synergistic interactions between the two components. They have been widely studied for photocatalysis, plasmon-enhanced spectroscopy, biotechnology, and solar cells.

View Article and Find Full Text PDF

Ag/Ag2S hybrid nanostructures have recently received much attention, because of their synthetically tunable plasmonic properties and enhanced chemical stability. Sulfidation of pregrown Ag nanocrystals is a facile process for making Ag/Ag2S nanostructures. Understanding the sulfidation process can help in finely controlling the compositional and structural parameters and in turn tailoring the plasmonic properties.

View Article and Find Full Text PDF

Gold nanorods (AuNRs) with an aspect ratio of 3-4 exhibit large cross sections for single and multi photon light absorption processes in the near infrared region due to surface plasmon resonances. 800 nm laser pulses with the 150 fsec pulse duration (fs laser) can trigger explosions of AuNRs. The fs laser pulses at 20 W/mm(2) equivalent continuous wave (cw) power density blasted AuNRs in QGY human carcinoma cells as confirmed using transmission electron microscopy, while a cw laser at the same power density and dose did not.

View Article and Find Full Text PDF

Morphological control of multimetallic nanostructures is crucial for obtaining shape-dependent physical and chemical properties. Up to date, control of the shapes of multimetallic nanostructures has remained largely empirical. Multimetallic nanostructures have been produced mostly through seed-mediated growth.

View Article and Find Full Text PDF

The formation of different Au nanocrystal core-resin shell structures through the control of the nanocrystal assembly and shell polymerization is investigated. 4-Mercaptophenol is employed together with formaldehyde as the resin monomers. 4-Mercaptophenol molecules bond to the surface of Au nanocrystals so that the resultant phenolic resin can intimately encapsulate Au nanocrystals.

View Article and Find Full Text PDF