Non-oxidative intercalation of graphite avoids damage to graphene lattices and is a suitable method to produce high-quality graphene. However, the yield of exfoliated graphene is low in this process due to the poor delamination efficiency of guest species. In this study, a Brønsted acid intercalation protocol is developed involving polyoxometalate (POM) clusters (HPWO) as guests and intercalation of graphite is realized at the sub-nanometer scale.
View Article and Find Full Text PDFThe use of polyoxometalate clusters (POMs) with multitudinous structures and surface properties as building blocks has sparked the development of cluster-assembled materials with many prospective applications. In comparison to classic molecules and assembly processes, control over the steric interactions and linkage of large POMs to achieve superlattices with multiple levels of organization remains a great challenge. This work presents a universal approach to modulate the spatial coordination behavior and configurations, and achieves a class of cluster superlattice architectures formed by linear alignment and two-dimensional arrangement of POM units.
View Article and Find Full Text PDFIn this work, three Cu metal-organic framework samples with tunable rhombic, squama, and trucated bipyramid morphologies have been synthesized at 0, 25, and 60 °C, respectively, and further employed as precursors to initially prepare Cu@C composites by the calcination-thermolysis procedure. Then Cu@C composites have been etched with HCl and subsequently activated with KOH to obtain activated porous carbon (APC-0, -25, and -60). Interestingly, APC-25 presents a loose multilevel morphology of cabbage and possesses the largest specific surface area (1880.
View Article and Find Full Text PDF