Naja atra bites often result in immediate and severe illness. The venom of N. atra contains a complex mixture of toxins that can cause significant damage to the patient's skin tissue.
View Article and Find Full Text PDFNaja atra bite is one of the most common severe snakebites in emergency departments. Unfortunately, the pathophysiological changes caused by Naja atra bite are unclear due to the lack of good animal models. In this study, an animal model of Naja atra bite in Guangxi Bama miniature pigs was established by intramuscular injection at 2 mg/kg of Naja atra venom, and serum metabolites were systematically analyzed using untargeted metabolomic and targeted metabolomic approaches.
View Article and Find Full Text PDFJ Venom Anim Toxins Incl Trop Dis
July 2023
Background: is one of the most dangerous venomous snakes prone to cardiopulmonary damage with extremely high mortality. In our previous work, we found that glutamine (Gln) and glutamine synthetase (GS) in pig serum were significantly reduced after bite. In the present study, to explore whether there is a link between the pathogenesis of cardiopulmonary injury and Gln metabolic changes induced by venom.
View Article and Find Full Text PDFBungarus multicinctus is one of the top ten venomous snakes in China, and its bite causes acute and severe diseases, but its pathophysiology remains poorly elucidated. Thus, an animal model of Bungarus multicinctus bite was established by intramuscular injection of 30μg/kg of Bungarus multicinctus venom, and then the serum metabolites were subsequently screened, identified and validated by ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) methods to explore the potential biomakers and possible metabolic pathways. Untargeted metabolomics analysis showed that 36 and 38 endogenous metabolites levels changed in ESI+ and ESI-, respectively, KEGG pathway analysis showed that 5 metabolic pathways, including mineral absorption, central carbon metabolism in cancer, protein digestion and absorption, aminoacyl-tRNA biosynthesis and ABC transporters might be closely related to Bungarus multicinctus bite.
View Article and Find Full Text PDF