Publications by authors named "Caidong Cheng"

Inverted perovskite solar cells (PSCs) attract continuing interest due to their low processing temperature, suppressed hysteresis, and compatibility with tandem cells. Considerable progress has been made with reported power conversion efficiency (PCE) surpassing 26%. Electron transport Materials (ETMs) play a critical role in achieving high-performance PSCs because they not only govern electron extraction and transport from the perovskite layer to the cathode, but also protect the perovskite from contact with ambient environment.

View Article and Find Full Text PDF

Defect passivation is crucial to enhancing the performance of perovskite solar cells (PSCs). In this study, we successfully synthesized a novel organic compound named DPPO, which consists of a double phosphonate group. Subsequently, we incorporated DPPO into a perovskite solution.

View Article and Find Full Text PDF

Hole-transporting layers (HTLs) are an essential component in inverted, p-i-n perovskite solar cells (PSCs) where they play a decisive role in extraction and transport of holes, surface passivation, perovskite crystallization, device stability, and cost. Currently, the exploration of efficient, stable, highly transparent and low-cost HTLs is of vital importance for propelling p-i-n PSCs toward commercialization. Compared to their inorganic counterparts, organic HTLs offer multiple advantages such as a tunable bandgap and energy level, easy synthesis and purification, solution processability, and overall low cost.

View Article and Find Full Text PDF