Publications by authors named "Caide Xiao"

During a cell state transition, cells travel along trajectories in a gene expression state space. This dynamical systems framework complements the traditional concept of molecular pathways that drive cell phenotype switching. To expose the structure that hinders cancer cells from exiting robust proliferative state, we assessed the perturbation capacity of a drug library and identified 16 non-cytotoxic compounds that stimulate MCF7 breast cancer cells to exit from proliferative state to differentiated state.

View Article and Find Full Text PDF

MicroRNAs are short single-stranded RNA molecules (18-25 nucleotides). Because of their ability to silence gene expressions, they can be used to diagnose and treat tumors. Experimental construction of microRNA libraries was the most important step to identify microRNAs from animal tissues.

View Article and Find Full Text PDF

Ovarian folliculogenesis and early embryogenesis are complex processes, which require tightly regulated expression and interaction of a multitude of genes. Small endogenous RNA molecules, termed microRNAs (miRNAs), are involved in the regulation of gene expression during folliculogenesis and early embryonic development. To identify miRNAs in bovine oocytes/ovaries, a bovine fetal ovary miRNA library was constructed.

View Article and Find Full Text PDF

This paper presents a simple mathematical model to predict the impedance data acquired by electric cell-substrate impedance sensing (ECIS) at frequencies between 25 Hz and 60 kHz. With this model, the equivalent resistance (R) and capacitance (C) of biological samples adhered on gold surfaces could be more precisely measured at 4 kHz. ECIS applications were extended for real-time monitoring of living bacteria cultivated in Luria Bertani (LB) culture medium by two different approaches.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small, highly conserved, non-coding RNAs that regulate gene expression of target mRNAs through cleavage or translational inhibition. miRNAs are most often identified through computational prediction from genome sequences. The rainbow trout genome sequence is not available yet, which does not allow miRNA prediction for this species which is of great economic interest for aquaculture and sport fisheries, and is a model research organism for studies related to carcinogenesis, toxicology, comparative immunology, disease ecology, physiology and nutrition.

View Article and Find Full Text PDF

High percentages of harmful microbes or their secreting toxins bind to specific carbohydrate sequences on human cells at the recognition and attachment sites. A number of studies also show that lectins react with specific structures of bacteria and fungi. In this report, we take advantage of the fact that a high percentage of microorganisms have both carbohydrate and lectin binding pockets at their surface.

View Article and Find Full Text PDF

An on-line and continuous technique based on electric cell substrate impedance sensing (ECIS) was developed for measuring the concentration and time response function of fibroblastic V79 cells exposed to toxicants. Mercury chloride (HgCl(2)), cadmium chloride (CdCl(2)), benzalkonium chloride (BAK), sodium arsenate (Na(2)HAsO(4)), and trinitrobenzene (TNB) were used as five test models. The first four chemicals serve as a model for acute toxicants, and TNB represents a model for long-term cytotoxicity effects.

View Article and Find Full Text PDF

Experimental and theoretical work has suggested that protein crystal nucleation can be affected by the separation of two metastable liquid phases with different local concentrations, or more specifically by critical density fluctuations. We measure the amplitude and correlation length of local concentration fluctuations by light scattering for supersaturated solutions of hen egg-white lysozyme (at pH 4.5 and at different NaCl concentrations, up to 7% w/v).

View Article and Find Full Text PDF

An on-line and continuous technique based on electric cell-substrate impedance sensing (ECIS) was developed for measuring the concentration and time response function of fibroblastic V79 cells exposed to mercury chloride and 1,3,5-trinitrobenzene (TNB). Attachment, spreading and proliferation of V79 fibroblastic cells cultured on a microarray of small gold electrodes precoated with fibronectin were detected as resistance changes. The response function was derived to reflect the resistance change as a result of cell attachment, spreading, mitosis and cytotoxicity effect.

View Article and Find Full Text PDF

This paper describes a simple and convenient method to measure the concentration and time response function f (C,t) of cells exposed to a toxicant by electric cell-substrate impedance sensing. Attachment and spreading of fibroblastic V79 cells cultured on small gold electrodes precoated with fibronectin were detected as electrical resistance changes. With this method, chemical cytotoxicity was easily screened by observing the response function of attached cells in the presence of inhibitor.

View Article and Find Full Text PDF

The attachment and spreading of fibroblast cells on a gold surface coated with fibronectin or ovalbumin were studied by a modified electric cell-substrate impedance sensor. In this system, cells were cultured in a well, equipped with a detecting gold electrode (surface area of 0.057 mm2) and a gold counter electrode (18 mm2).

View Article and Find Full Text PDF