Publications by authors named "CaiYong Chen"

Heme is an iron-containing tetrapyrrole that plays a critical role in various biological processes, including oxygen transport, electron transport, signal transduction, and catalysis. However, free heme is hydrophobic and potentially toxic to cells. Organisms have evolved specific pathways to safely transport this essential but toxic macrocycle within and between cells.

View Article and Find Full Text PDF

Vesicle trafficking is a fundamental cellular process that controls the transport of various proteins and cargos between cellular compartments in eukaryotes. Using a combination of genome-wide CRISPR screening in mammalian cells and RNAi screening in Caenorhabditis elegans, we identify chaperonin containing TCP-1 subunit 4 (CCT4) as a critical regulator of protein secretion and vesicle trafficking. In C.

View Article and Find Full Text PDF

Haem is an iron-containing tetrapyrrole that is critical for a variety of cellular and physiological processes. Haem binding proteins are present in almost all cellular compartments, but the molecular mechanisms that regulate the transport and use of haem within the cell remain poorly understood. Here we show that haem-responsive gene 9 (HRG-9) (also known as transport and Golgi organization 2 (TANGO2)) is an evolutionarily conserved haem chaperone with a crucial role in trafficking haem out of haem storage or synthesis sites in eukaryotic cells.

View Article and Find Full Text PDF

Developing erythroblasts acquire massive amounts of iron through the transferrin (Tf) cycle, which involves endocytosis, sorting, and recycling of the Tf-Tf receptor (Tfrc) complex. Previous studies on the hemoglobin-deficit (hbd) mouse have shown that the exocyst complex is indispensable for the Tfrc recycling; however, the precise mechanism underlying the efficient exocytosis and recycling of Tfrc in erythroblasts remains unclear. Here, we identify the guanine nucleotide exchange factor Grab as a critical regulator of the Tf cycle and iron metabolism during erythropoiesis.

View Article and Find Full Text PDF

Vertebrates generate mature red blood cells (RBCs) via a highly regulated, multistep process called erythropoiesis. Erythropoiesis involves synthesis of heme and hemoglobin, clearance of the nuclei and other organelles, and remodeling of the plasma membrane, and these processes are exquisitely coordinated by specific regulatory factors including transcriptional factors and signaling molecules. Defects in erythropoiesis can lead to blood disorders such as congenital dyserythropoietic anemias, Diamond-Blackfan anemias, sideroblastic anemias, myelodysplastic syndrome, and porphyria.

View Article and Find Full Text PDF

Mitochondria are the central hub for many metabolic processes, including the citric acid cycle, oxidative phosphorylation, and fatty acid oxidation. Recent studies have identified a new mitochondrial protein family, Fam210, that regulates bone metabolism and red cell development in vertebrates. The model organism Caenorhabditis elegans has a Fam210 gene, y56a3a.

View Article and Find Full Text PDF

The congenital sideroblastic anemias (CSAs) can be caused by primary defects in mitochondrial iron-sulfur (Fe-S) cluster biogenesis. HSCB (heat shock cognate B), which encodes a mitochondrial cochaperone, also known as HSC20 (heat shock cognate protein 20), is the partner of mitochondrial heat shock protein A9 (HSPA9). Together with glutaredoxin 5 (GLRX5), HSCB and HSPA9 facilitate the transfer of nascent 2-iron, 2-sulfur clusters to recipient mitochondrial proteins.

View Article and Find Full Text PDF

Mammalian red blood cells lack nuclei. The molecular mechanisms underlying erythroblast nuclear condensation and enucleation, however, remain poorly understood. Here we show that Wdr26, a gene upregulated during terminal erythropoiesis, plays an essential role in regulating nuclear condensation in differentiating erythroblasts.

View Article and Find Full Text PDF
Article Synopsis
  • Erythropoietin (EPO) signaling is crucial for the final stages of red blood cell development, but how it affects iron metabolism remains unclear.
  • Research identified a protein called FAM210B that plays a key role in processes like hemoglobin formation and cell division during this maturation stage.
  • FAM210B is not directly an iron transporter but helps in iron import to mitochondria, which is necessary for producing heme and iron-sulfur clusters essential for red blood cell function.
View Article and Find Full Text PDF

Recent studies found that mutations in the human SLC30A10 gene, which encodes a manganese (Mn) efflux transporter, are associated with hypermanganesemia with dystonia, polycythemia, and cirrhosis (HMDPC). However, the relationship between Mn metabolism and HMDPC is poorly understood, and no specific treatments are available for this disorder. Here, we generated two zebrafish slc30a10 mutant lines using the CRISPR/Cas9 system.

View Article and Find Full Text PDF

Heme is an iron-containing tetrapyrrole that plays a critical role in regulating a variety of biological processes including oxygen and electron transport, gas sensing, signal transduction, biological clock, and microRNA processing. Most metazoan cells synthesize heme via a conserved pathway comprised of eight enzyme-catalyzed reactions. Heme can also be acquired from food or extracellular environment.

View Article and Find Full Text PDF
Article Synopsis
  • The research highlights how different cell types in multicellular organisms, like red blood cells, acquire amino acids and adjust their functions based on availability.
  • It emphasizes that the amino acid transporter gene Lat3 is crucial for increasing the uptake of neutral essential amino acids (NEAAs) during red blood cell maturation, directly impacting hemoglobin production.
  • Inhibition of NEAA uptake led to decreased hemoglobin levels in zebrafish and mouse cells, but deleting specific genetic components could restore hemoglobin production by bypassing the sensors that link amino acid levels to cell function.
View Article and Find Full Text PDF

Aims: Hereditary hemochromatosis (HH) is an iron overload disease that is caused by mutations in HFE, HJV, and several other genes. However, whether HFE-HH and HJV-HH share a common pathway via hepcidin regulation is currently unclear. Recently, some HH patients have been reported to carry concurrent mutations in both the HFE and HJV genes.

View Article and Find Full Text PDF

The zebrafish genome encodes two slc4a1 genes, one expressed in erythroid tissues and the other in the HR (H(+)-ATPase-rich) type of embryonic skin ionocytes, and two slc4a2 genes, one in proximal pronephric duct and the other in several extrarenal tissues of the embryo. We now report cDNA cloning and functional characterization of zebrafish slc4a3/ae3 gene products. The single ae3 gene on chromosome 9 generates at least two low-abundance ae3 transcripts differing only in their 5'-untranslated regions and encoding a single definitive Ae3 polypeptide of 1170 amino acids.

View Article and Find Full Text PDF
Article Synopsis
  • Sorting nexin 3 (Snx3) is essential for recycling the transferrin receptor (Tfrc), which is crucial for iron delivery to red blood cell progenitors.
  • Knocking down Snx3 leads to anemia and hemoglobin issues due to disrupted iron uptake via transferrin, with excess iron accumulating in endosomes.
  • Snx3 interacts with the retromer component Vps35 to help sort Tfrc, highlighting its role in iron balance and red blood cell production, and presenting it as a potential target for studying iron metabolism disorders.
View Article and Find Full Text PDF
Article Synopsis
  • Defects in haem biosynthesis, particularly involving the enzyme ferrochelatase (Fech), lead to congenital anaemias due to impaired haem synthesis.
  • Researchers used zebrafish models to identify the role of mitochondrial ATPase inhibitory factor 1 (Atpif1) in regulating Fech's efficiency for haem production.
  • The study showed that Atpif1 deficiency disrupts mitochondrial pH and redox potential, decreasing Fech activity and ultimately resulting in anaemia across different species, highlighting its significance in red blood cell development and potential implications for human diseases.
View Article and Find Full Text PDF

Purpose Of Review: Heme biosynthesis requires a series of enzymatic reactions that take place in the cytosol and the mitochondria as well as the proper intercellular and intracellular trafficking of iron. Heme can also be acquired by intestinal absorption and intercellular transport. The purpose of this review is to highlight recent work on heme and iron transport with an emphasis on their relevance in erythropoiesis.

View Article and Find Full Text PDF

The roundworm Caenorhabditis elegans is a heme auxotroph that requires the coordinated actions of HRG-1 heme permeases to transport environmental heme into the intestine and HRG-3, a secreted protein, to deliver intestinal heme to other tissues including the embryo. Here we show that heme homeostasis in the extraintestinal hypodermal tissue was facilitated by the transmembrane protein HRG-2. Systemic heme deficiency up-regulated hrg-2 mRNA expression over 200-fold in the main body hypodermal syncytium, hyp 7.

View Article and Find Full Text PDF

Iron plays an essential role in cellular metabolism and biological processes. However, due to its intrinsic redox activity, free iron is a potentially toxic molecule in cellular biochemistry. Thus, organisms have developed sophisticated ways to import, sequester, and utilize iron.

View Article and Find Full Text PDF

Extracellular free heme can intercalate into membranes and promote damage to cellular macromolecules. Thus it is likely that specific intercellular pathways exist for the directed transport, trafficking, and delivery of heme to cellular destinations, although none have been found to date. Here we show that Caenorhabditis elegans HRG-3 is required for the delivery of maternal heme to developing embryos.

View Article and Find Full Text PDF

Iron is an essential element for diverse biological functions. In mammals, the majority of iron is enclosed within a single prosthetic group: heme. In metazoans, heme is synthesized via a highly conserved and coordinated pathway within the mitochondria.

View Article and Find Full Text PDF