Peach brown rot, caused by Monilinia fructicola, is one of the most serious peach diseases. A strain belonging to the Actinomycetales, named Streptomyces blastmyceticus JZB130180, was found to have a strong inhibitory effect on M. fructicola in confrontation culture.
View Article and Find Full Text PDFThree yeast strains, named as FHL-A, FHL-B, and FHL-C, were isolated from peach fruit surfaces collected from different regions in the North of China highly produced protease and were presented as single separate group in the genus Metschnikowia by sequence comparisons of 26S rRNA gene D1/D2 domain and internal transcribed spacer (ITS) region. BLASTn alignments on NCBI showed that the similarity of 26S rRNA gene sequences of the three strains to all sequences of other yeasts accessed into the GenBank/EMBL/DDBJ and other database was very low (≦93%). The phylogenetic tree based on the D1/D2 region of 26S rRNA gene sequences revealed that three strains are most closely related to Metschnikowia koreensis KCTC 7828T (AF257272.
View Article and Find Full Text PDFBrown rot caused by Monilinia spp. is among the most important postharvest diseases of commercially grown stone fruits, and application of antagonistic yeasts to control brown rot is one promising strategy alternative to chemical fungicides. In this research, new yeast strains were isolated and tested for their activity against peach brown rot caused by Monilinia fructicola.
View Article and Find Full Text PDFThe permafrost soil of Mo-he in Northeast China presents a typical cold environment colonized by psychrophilic microorganisms. This study is aimed at assessing the bacterial communities of permafrost soil of Mo-he in China by sequencing the 16S rRNA genes and Mothur analysis. PCR products with universal 16S rRNA gene primers were cloned and partially sequenced, and bacterial identification at the species was performed by comparative analysis with the GenBank/EMBL/DDBJ database.
View Article and Find Full Text PDFActinomyces strain A01 was isolated from soil of a vegetable field in the suburb of Beijing, China. According to the morphological, cultural, physiological and biochemical characteristics, and 16S rDNA sequence analysis, strain A01 was identified as Streptomyces lydicus. In the antimicrobial spectrum test strain A01 presented a stable and strong inhibitory activity against several plant pathogenic fungi such as Fusarium oxysporum, Botrytis cinerea, Monilinia laxa, etc.
View Article and Find Full Text PDFA Guangzhou isolate of ZYMV infecting Benincasa hispida Cogn. var. chieh-qua How was identified by indicator tests and partial sequence amplification.
View Article and Find Full Text PDF