Nanochannel-based plasmon-enhanced Raman scattering (PERS) substrates can simulate biological environments, revealing the recognition and conformation information on biomolecules in confined spaces. In this work, a metamaterial nanochannel-based PERS platform was constructed for highly sensitive analysis of DNA recognition to Hg with the lowest Hg concentration down to 1.0 pM.
View Article and Find Full Text PDFDetection of cancer biomarker is of great significance in cancer diagnostics. In this work, we propose an ultrasensitive and in situ method for plasmon enhanced Raman scattering (PERS) detection of nucleolin (NCL) using a 3D hybrid plasmonic metamaterial (PM). In this aptasensor, thiolated complementary DNA (cDNA) immobilized on PM can hybridize with Rox-labeled NCL-binding aptamer (AS1411-Rox) to form a rigid double-stranded DNA (dsDNA).
View Article and Find Full Text PDFPlasmonic materials with highly confined electromagnetic fields at resonance wavelengths have been widely used to enhance Raman scattering signals. To achieve the maximum enhancement, the resonance peaks of the plasmonic materials should overlap with the excitation and emission wavelengths of target molecules, which is difficult for most of the plasmonic materials possessing a few narrow resonance peaks. Here, we report an ultrabroadband plasmonic metamaterial absorber (BPMA) that can absorb 99% of the incident light energy and excite plasmon resonance from the ultraviolet to near-infrared range (250-1900 nm), which allows us to observe efficient plasmon-enhanced Raman scattering (PERS) with any excitation sources.
View Article and Find Full Text PDFLayered/two-dimensional covalent organic frameworks (2D COF) are crystalline porous materials composed of light elements linked by strong covalent bonds. Interlayer force is one of the main factors directing the formation of a stacked layer structure, which plays a vital role in the stability, crystallinity, and porosity of layered COFs. The as-developed new way to modulate the interlayer force of imine-linked 2D TAPB-PDA-COF (TAPB = 1,3,5-tris(4-aminophenyl)benzene, PDA = terephthaldehyde) by only adjusting the pH of the solution.
View Article and Find Full Text PDFGraphene plasmon has attracted extensive interest due to the unprecedented electromagnetic confinement, long propagation distance, and tunable plasmonic frequency. Successful applications of graphene plasmon as infrared sensors have been recently demonstrated, yet they are mainly focused on solid/solid and solid/gas interfaces analysis. Herein, we, for the first time, propose a graphene plasmon-enhanced infrared sensor based on attenuated total reflection configuration for in situ analysis of aqueous-phase molecules.
View Article and Find Full Text PDFA versatile and sensitive platform for label-free bioanalysis has been proposed on the basis of attenuated total reflection-surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) using Au/ZnSe as the enhancement substrate that allows a wide spectral range down to 700 cm. Au nanoparticles are stably deposited on the surface of a ZnSe prism due to the formation of Au-Se bonds via electroless deposition, and the enhancement factor of the resultant Au/ZnSe substrate is about 2 times larger than that of the commonly used Au/Si substrate. As a demonstration, the Au/ZnSe-based SEIRAS has been applied to obtain abundant structural information in the fingerprint region and quantitative analysis of various biomolecular interactions such as DNA hybridization and immunoreaction without any labeling process.
View Article and Find Full Text PDFZhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi
February 2010
Objective: To study skin sensitization as well as liver and kidney impairment in guinea pigs treated with trichloroethylene (TCE).
Methods: Guinea pig maximization test (GPMT) was applied in this study, guinea pigs were divided into 3 groups, namely negative control, positive control and TCE treatment. Animals of 3 groups were administrated with olive oil, 2, 4-dinitrochlorobenzene (DNCB), and TCE, respectively, by intradermal injection.