Publications by authors named "Cai-Zheng Li"

Introduction: To determine the effectiveness of the Star Family Doctors Training Program, a comprehensive Continuing professional development (CPD) program for general practitioners (GPs) in a compact medical consortium.

Patients And Methods: Observational cohort study with a quantitative analyses in primary health care institutions in Sichuan Province. The interventions were as following: (1) The Star Family Doctors Training Program is a full-time, local government allocation program certified by the Health Department of Sichuan Province, emphasizing small group learning and practice, and using standard patients and medical patient simulators; 30 participants were selected by their institutions.

View Article and Find Full Text PDF
Article Synopsis
  • An error in the original article labeled 'stereoisomerism' in Fig. 1.
  • The label has been corrected to "Constitutional isomerism (same formula, different connectivity)."
  • The online version of the article reflects this correction.
View Article and Find Full Text PDF

Isomerism is a fundamental chemical concept, reflecting the fact that the arrangement of atoms in a molecular entity has a profound influence on its chemical and physical properties. Here we describe a previously unclassified fundamental form of conformational isomerism through four resolved stereoisomers of a transoid (BF)O(BF)-quinoxalinoporphyrin. These comprise two pairs of enantiomers that manifest structural relationships not describable within existing IUPAC nomenclature and terminology.

View Article and Find Full Text PDF

Hetrombopag olamine (hetrombopag) is a novel small-molecule, orally bioavailable, non-peptide thrombopoietin (TPO) receptor agonist that is being developed as the treatment for thrombocytopenia. Two randomized, placebo-controlled phase I studies were conducted in 72 healthy individuals to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of hetrombopag. Hetrombopag was orally administered with a single dose in five dose cohorts (5 mg, 10 mg, 20 mg, 30 mg or 40 mg) in the first study, and given once daily for 10 days in three dose cohorts (2.

View Article and Find Full Text PDF

Objective: To investigate the safety and maximum tolerable dosage of injectable cefetamet sodium Sixty healthy volunteers were enrolled in this study. with a single infusion in Chinese healthy volunteers.

Methods: A double-blinded, randomized, placebo-controlled design was adopted.

View Article and Find Full Text PDF

Simultaneously measured absorption (ABS) and magnetic circular dichroism (MCD) spectra of the Q-bands of chlorophyll-a (Chl-a) in ether over 150-186 K reveal that the species that forms at low temperature is a chlorophyll hydrate rather than a diether complex. We have recently proposed a new assignment paradigm for the spectra of chlorophillides which, for the first time, quantitatively accounts for a wide range of observed data. Observations performed at low temperature in ether have historically been very important for the interpretation of the spectra of Chl-a.

View Article and Find Full Text PDF

We provide a new and definitive spectral assignment for the absorption, emission, high-resolution fluorescence excitation, linear dichroism, and/or magnetic circular dichroism spectra of 32 chlorophyllides in various environments. This encompases all data used to justify previous assignments and provides a simple interpretation of unexplained complex decoherence phenomena associated with Qx → Qy relaxation. Whilst most chlorophylls conform to the Gouterman model and display two independent transitions Qx (S2) and Qy (S1), strong vibronic coupling inseparably mixes these states in chlorophyll-a.

View Article and Find Full Text PDF

The absorption and fluorescence spectra of chlorophyll f (newly discovered in 2010) have been measured in acetone and methanol at different temperatures. The spectral analysis and assignment are compared with the spectra of chlorophyll a and d under the same experimental conditions. The spectroscopic properties of these chlorophylls have further been studied by the aid of density functional CAM-B3LYP and high-level symmetric adapted coupled-cluster configuration interaction calculations.

View Article and Find Full Text PDF

A unified picture is presented of water interacting with pyridine, pyridazine, pyrimidine, and pyrazine on the S(1) manifold in both gas-phase dimers and in aqueous solution. As (n,π*) excitation to the S(1) state removes electrons from the ground-state hydrogen bond, this analysis provides fundamental understanding of excited-state hydrogen bonding. Traditional interpretations view the excitation as simply breaking hydrogen bonds to form dissociated molecular products, but reactive processes such as photohydrolysis and excited-state proton coupled electron transfer (PCET) are also possible.

View Article and Find Full Text PDF

A novel application of intramolecular base catalysis confers enhanced reaction rates for aminolysis ligations between peptide thioesters and peptides bearing N-terminal aspartate or glutamate residues. The broad scope of this process and its application in the total synthesis of the diabetes drug exenatide is demonstrated.

View Article and Find Full Text PDF

The metal complexation properties of the naturally occurring Maillard reaction product isomaltol HL(2) are investigated by measurement of its stability constants with copper(II), zinc(II), and iron(III) using potentiometric pH titrations in water, by structural and magnetic characterization of its crystalline complex, [Cu(L(2))(2)]·8H(2)O, and by density functional theory calculations. Strong complexation is observed to form the bis(isomaltolato)copper(II) complex incorporating copper in a typical (pseudo-)square-planar geometry. In the solid state, extensive intra- and intermolecular hydrogen bonding involving all three oxygen functions per ligand assembles the complexes into ribbons that interact to form two-dimensional arrays; further hydrogen bonds and π interactions between the furan moiety of the anionic ligands and adjacent copper(II) centers connect the complexes in the third dimension, leading to a compact polymeric three-dimensional (3D) arrangement.

View Article and Find Full Text PDF

Low- and high-resolution absorption and fluorescence emission Q(y) spectra of bacteriochlorophyll a (BChl a) were recorded, along with homogeneous band line shapes, revealing significant asymmetry between the absorption and emission profiles that are interpreted using a priori spectral calculations. The spectra were recorded in a range of organic solvents facilitating both penta- and hexa-coordination of Mg at ambient and cryogenic temperatures. Detailed vibrational structure in the ground electronic state, virtually independent of Mg coordination, was revealed at 4.

View Article and Find Full Text PDF

Chlorophylls are essential for light-harvesting and energy transduction in photosynthesis. Four chemically distinct varieties have been known for the past 60 years. Here we report isolation of a fifth, which we designate chlorophyll f.

View Article and Find Full Text PDF

Quinoxalino[2,3-b]porphyrins are pi-expanded porphyrins, having a quinoxaline fused to a beta,beta-pyrrolic position of the porphyrin. They are used as components in systems proposed as molecular wires. Knowledge of their redox properties is of value in the design of electron- or hole-conduction systems.

View Article and Find Full Text PDF

Quinoxalino[2,3-b']porphyrins are pi-expanded porphyrins, having a quinoxaline fused to a beta,beta'-pyrrolic position of the porphyrin. They are used as components in systems proposed as 'molecular wires'. Knowledge of their redox properties is of value in the design of electron- or hole-conduction systems.

View Article and Find Full Text PDF

The synthesis and redox properties of a series of free-base and metal(II) quinoxalino[2,3-b']porphyrins and their use in an investigation of the substituent effects on the degree of communication between the porphyrin and its beta,beta'-fused quinoxalino component are reported. ESR, thin-layer spectroelectrochemistry, and quantum chemical calculations of the resultant radical anions from one-electron reduction indicate that localization of the unpaired electron across both the porphyrin and the fused quinoxalino group can be controlled, the system as a whole behaving as a highly polarizable pi-expanded porphyrin radical anion. ESR studies on the radical anions of zinc(II) quinoxalino[2,3-b']porphyrin derivatives indicate that nitrogen-atom spin distribution changes as a function of chemical substitution: 27% quinoxaline character when the porphyrin ring bears a 7-nitro substituent, 34% quinoxaline character in the unsubstituted parent, and 51-61% nitroquinoxaline character when the quinoxalino unit has one or more nitro groups.

View Article and Find Full Text PDF

The geometric properties, ionization potentials, heats of formation, incremental binding energies, and protonation energies for up to 75 magnesium-containing compounds have been studied using the self-consistent-charge density-functional tight-binding method (SCC-DFTB), the complete-basis set (CBS-QB3) method, traditional B3LYP density-functional theory, and a number of modern semiempirical methods such as Austin Model 1 (AM1), modified neglect of diatomic overlap without and with inclusion of d functions (MNDO, MNDO/d), and the Parametric Method 3 (PM3) and its modification (PM5). The test set contains some widely varying chemical motifs including ionic or covalent, closed-shell or radical compounds, and many biologically relevant complexes. Geometric data are compared to experiment, if available, and otherwise to previous high-level ab initio calculations or the present B3LYP results.

View Article and Find Full Text PDF

The chlorophyll d containing cyanobacterium, Acaryochloris marina has provided a model system for the study of chlorophyll replacement in the function of oxygenic photosynthesis. Chlorophyll d replaces most functions of chlorophyll a in Acaryochloris marina. It not only functions as the major light-harvesting pigment, but also acts as an electron transfer cofactor in the primary charge separation reaction in the two photosystems.

View Article and Find Full Text PDF

The hydrogen bonding between water and pyrazine in its ground, lowest (n,pi*), and lowest (pi,pi*) states is investigated using density-functional theory (DFT), time-dependent density function theory (TD-DFT), coupled-cluster singles and doubles (CCSD) theory and equation-of-motion coupled cluster (EOM-CCSD) theory. For all states, the minimum-energy configuration is found to be an orthodox linear hydrogen-bonded species, with the bond strength increasing by 0.4 kcal mol-1 upon formation of the (pi,pi*) state and decreasing by 1.

View Article and Find Full Text PDF

While density functional theory (DFT) has been proven to be extremely useful for the prediction of thermodynamic and spectroscopic properties of molecules, to date most functionals used in common implementations of DFT display a systematic failure to predict the properties of charge-transfer processes. While this is explicitly manifest in Rydberg transitions of atoms and molecules and in molecular charge-transfer spectroscopy, it also becomes critical for systems containing extended conjugation such as polyenes and other conducting polymers, porphyrins, chlorophylls, etc. A new density functional, a Coulomb-attenuated hybrid exchange-correlation functional (CAM-B3LYP), has recently been developed specifically to overcome these limitations, and it has been shown to properly predict molecular charge-transfer spectra.

View Article and Find Full Text PDF

Hydrogen bonds from water to excited-state formaldehyde and from water to excited-state pyridine have been shown to display novel motifs to traditional hydrogen bonds involving ground states, with, in particular for H2O:pyridine, strong interactions involving the electron-rich pi cloud dominating the (n,pi) excited state. We investigate H2O:pyrimidine and various dihydrated species and reveal another motif, one in which the hydrogen bonding can dramatically alter the electronic structure of the excited state. Such effects are rare for ground-state interactions for which hydrogen bonding usually acts to merely perturb the electronic structure of the participating molecules.

View Article and Find Full Text PDF

As molecular electronics advances, efficient and reliable computation procedures are required for the simulation of the atomic structures of actual devices, as well as for the prediction of their electronic properties. Density-functional theory (DFT) has had widespread success throughout chemistry and solid-state physics, and it offers the possibility of fulfilling these roles. In its modern form it is an empirically parameterized approach that cannot be extended toward exact solutions in a prescribed way, ab initio.

View Article and Find Full Text PDF

The Raman spectroscopy of purified chlorophyll (Chl) d extracted from Acaryochloris marina has been measured over the wide region of 250-3200 cm(-1) at 77 K following excitation of its Soret band at 488 nm and analyzed with the aid of hybrid density-functional vibrational analyses. A Raman peak specific to Chl d, which arises from the formyl group 3(1) C=O stretching, was clearly observed at 1659 cm(-1) with medium intensity. Peaks due to other C=O stretching vibrations of the 13(1) keto-, 13(3) ester- and 17(3) groups were also observed.

View Article and Find Full Text PDF

A comprehensive study of the photophysical properties of chlorophyll (Chl) d in 1:40 acetonitrile-methanol solution is performed over the temperature range 170-295 K. From comparison of absorption and emission spectra, time-dependent density-functional calculations and homologies with those of Chl a, we assign the key features of the absorption and fluorescence spectra. Possible photophysical energy relaxation mechanisms are summarized, and thermal equilibration processes are studied in detail by monitoring the observed emission profiles and quantum yields as a function of excitation energy.

View Article and Find Full Text PDF

The Raman spectroscopy of chlorophyll (Chl) d isolated from Acaryochloris marina has been measured in the range of 250-3200 cm(-1) at 77 K following excitation of its B(x) band at 488 nm. A peak at 1659 cm(-1) of medium intensity arising from Cz=O stretching vibration in the formyl group 3(1) specific to Chl d was observed clearly. Peaks due to other Cz=O stretching vibrations of the 13(1) keto-, 13(3) ester- and 17(3) groups have also been observed with much weaker intensities.

View Article and Find Full Text PDF