Publications by authors named "Cai M Roberts"

TWIST1 is a transcription factor that is necessary for healthy neural crest migration, mesoderm development, and gastrulation. It functions as a key regulator of epithelial-to-mesenchymal transition (EMT), a process by which cells lose their polarity and gain the ability to migrate. EMT is often reactivated in cancers, where it is strongly associated with tumor cell invasion and metastasis.

View Article and Find Full Text PDF

Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy, largely due to metastasis and drug resistant recurrences. Fifteen percent of ovarian tumors carry mutations in BRCA1 or BRCA2, rendering them vulnerable to treatment with PARP inhibitors such as olaparib. Recent studies have shown that TGFβ can induce "BRCAness" in BRCA wild-type cancer cells.

View Article and Find Full Text PDF

Zika virus is a positive-sense single-stranded RNA virus, which can be transmitted across the placenta and has adverse effects on fetal development during pregnancy. The severity of these complications highlights the importance of prevention and treatment. However, no vaccines or drugs are currently available.

View Article and Find Full Text PDF

CRISPR/Cas9-based gene editing is a recent advance that allows for the knockout or alteration of target genes within mammalian cells. Many variations of the technique exist, but here we describe two systems of plasmid-based CRISPR gene knockout which together allow for the selective knockout of virtually any gene target. Compared with other CRISPR-based systems, these plasmids have the advantages of delivering all the necessary components in one plasmid, choice of multiple selectable markers, and choice of route of administration into target cells.

View Article and Find Full Text PDF

Phenotypic analysis of the effects of a gene of interest may be limited because stable expression of some genes leads to adverse consequences in cell survival, such as disturbance of cell cycle progression, senescence, autophagy, and programmed cell death. One of the best examples is tumor suppressor p53. p53 functions as a tumor suppressor by inducing cell cycle arrest and apoptosis in response to genotoxic and environmental insults.

View Article and Find Full Text PDF

Deaths from ovarian cancer usually occur when patients succumb to overwhelmingly numerous and widespread micrometastasis. Whereas epithelial-mesenchymal transition is required for epithelial ovarian cancer cells to acquire metastatic potential, the cellular phenotype at secondary sites and the mechanisms required for the establishment of metastatic tumors are not fully determined. Using in vitro and in vivo models we show that secondary epithelial ovarian cancer cells (sEOC) do not fully reacquire the molecular signature of the primary epithelial ovarian cancer cells from which they are derived.

View Article and Find Full Text PDF

Epithelial ovarian cancer is the deadliest gynecologic cancer, due in large part to recurrent tumors. Recurrences tend to have metastasized, mainly in the peritoneal cavity and developed resistance to the first line chemotherapy. Key to the progression and ultimate lethality of ovarian cancer is the existence of extensive intra-tumoral heterogeneity (ITH).

View Article and Find Full Text PDF

Twist1 is a basic helix-loop-helix transcription factor that plays a key role in embryonic development, and its expression is down-regulated in adult cells. However, Twist1 is highly expressed during cancer development, conferring a proliferative, migratory, and invasive phenotype to malignant cells. Twist1 expression can be regulated post-translationally by phosphorylation or ubiquitination events.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is a critical process involved in cancer metastasis and chemoresistance. Twist1 is a key EMT-inducing transcription factor, which is upregulated in multiple types of cancers and has been shown to promote tumor cell invasiveness and support tumor progression. Conversely, p53 is a tumor suppressor gene that is frequently mutated in cancers.

View Article and Find Full Text PDF

A growing body of evidence has demonstrated the promising anti-tumor effects of resveratrol in ovarian cancer cells, including its inhibitory effects on STAT3 activation. Nonetheless, the low bioavailability of resveratrol has reduced its attractiveness as a potential anti-cancer treatment. In contrast, pterostilbene, a stilbenoid and resveratrol analog, has demonstrated superior bioavailability, while possessing significant antitumor activity in multiple solid tumors.

View Article and Find Full Text PDF

Endometrial cancer is the most common gynecologic cancer in the United States and its incidence and mortality has been rising over the past decade. Few treatment options are available for patients with advanced and recurring endometrial cancers. Novel therapies, which are frequently toxic, are difficult to establish in this patient population which tends to be older and plagued by comorbidities such as diabetes mellitus and hypertension.

View Article and Find Full Text PDF

Background: Most cancer deaths result from tumor cells that have metastasized beyond their tissue of origin, or have developed drug resistance. Across many cancer types, patients with advanced stage disease would benefit from a novel therapy preventing or reversing these changes. To this end, we have investigated the unique WR domain of the transcription factor TWIST1, which has been shown to play a role in driving metastasis and drug resistance.

View Article and Find Full Text PDF

Epithelial ovarian cancer (EOC) is the most deadly gynecologic malignancy on account of its late stage at diagnosis and frequency of drug resistant recurrences. Novel therapies to overcome these barriers are urgently needed. TWIST is a developmental transcription factor reactivated in cancers and linked to angiogenesis, metastasis, cancer stem cell phenotype, and drug resistance, making it a promising therapeutic target.

View Article and Find Full Text PDF

Epithelial ovarian cancer (EOC) is the most deadly gynaecologic malignancy due to late onset of symptoms and propensity towards drug resistance. Epithelial-mesenchymal transition (EMT) has been linked to the development of chemoresistance in other cancers, yet little is known regarding its role in EOC. In this study, we sought to determine the role of the transcription factor TWIST1, a master regulator of EMT, on cisplatin resistance in an EOC model.

View Article and Find Full Text PDF

Unlabelled: Growth and progression of solid tumors depend on the integration of multiple pro-growth and survival signals, including the induction of angiogenesis. TWIST1 is a transcription factor whose reactivation in tumors leads to epithelial to mesenchymal transition (EMT), including increased cancer cell stemness, survival, and invasiveness. Additionally, TWIST1 drives angiogenesis via activation of IL-8 and CCL2, independent of VEGF signaling.

View Article and Find Full Text PDF

Breast cancer is the leading cause of cancer-related deaths among women in the United States, and survival rates are lower for patients with metastases and/or triple-negative breast cancer (TNBC; ER, PR, and Her2 negative). Understanding the mechanisms of cancer metastasis is therefore crucial to identify new therapeutic targets and develop novel treatments to improve patient outcomes. A potential target is the TWIST1 transcription factor, which is often overexpressed in aggressive breast cancers and is a master regulator of cellular migration through epithelial-mesenchymal transition (EMT).

View Article and Find Full Text PDF
Article Synopsis
  • Homologous recombination is a key DNA repair process in eukaryotes after radiation exposure, especially involving repetitive DNA sequences.
  • The study uses Saccharomyces cerevisiae to model the formation of chromosomal translocations via a method called single-strand annealing and highlights the role of the Rad59 protein.
  • Rad59 has both Rad52-dependent and independent functions, aiding in Rad52's localization at DNA break sites and affecting genome structure after DNA damage.
View Article and Find Full Text PDF