Publications by authors named "Cahit A Evrensel"

Our recent in vivo animal studies showed the feasibility of using micron sized iron particles to induce physical damage to breast cancer tumors and thereby triggering a localized immune response to help fight the cancer. Combining a hyperthermic treatment with this ongoing study may enhance the immune response. As a result, a novel treatment of inducing hyperthermia using iron particles excited by a continuous wave near-infrared laser was analyzed.

View Article and Find Full Text PDF

The primary tumor represents a potential source of antigens for priming immune responses for disseminated disease. Current means of debulking tumors involves the use of cytoreductive conditioning that impairs immune cells or removal by surgery. We hypothesized that activation of the immune system could occur through the localized release of tumor antigens and induction of tumor death due to physical disruption of tumor architecture and destruction of the primary tumor in situ.

View Article and Find Full Text PDF

Background: Viscoelastic properties of simulated mucus, angle of tracheal inclination (theta), and high-frequency airflow oscillations on median displacement of simulated mucus during simulated cough were investigated in this study.

Methods: Mucus simulants with viscoelastic properties similar to healthy individuals and patients with COPD were prepared using locust bean gum (LBG)-water solution (0.38 g LBG in 100 mL water) cross-linked with 3-mL and 12-mL borax-water solution (0.

View Article and Find Full Text PDF

Basic interaction mechanism between the air flow and viscoelastic mucus layer lining a rigid tube is computationally studied. Linear wave instability theory is applied to the coupled air-mucus system to explore the stability of the interface. Primary velocity profile is taken to be the mean profile of turbulent flow and turbulent fluctuations are neglected.

View Article and Find Full Text PDF

Interaction of mucus simulant with airflow in a rectangular channel is investigated experimentally. Two different viscoelastic gel mucus simulants are prepared by cross linking Borax with Locust Bean Gum (LBG) solution; liquid-like (LM) with lower storage modulus and semi-solid (SM). The rheological difference between LM and SM represent the qualitative change from liquid-like healthy mucus to the one with higher storage modulus found in a person with lung disease.

View Article and Find Full Text PDF

Basic wave interaction mechanism between the laminar airflow and viscoelastic layer in a rigid tube is investigated numerically. The purpose is to explore the effect of mucus viscoelasticity on the stability of the coupled airflow-mucus system in pulmonary airways under clinical conditions where the serous layer is absent. The results indicate that the onset flow speed, for the initiation of unstable surface waves, is very sensitive to mucus viscosity and it may be as high as 35 times the elastic case for a very viscous mucus with the same elasticity.

View Article and Find Full Text PDF