Symmetry breaking in topological matter has become in recent years a key concept in condensed matter physics to unveil novel electronic states. In this work, we predict that broken inversion symmetry and strong spin-orbit coupling in trigonal PtBi lead to a type-I Weyl semimetal band structure. Transport measurements show an unusually robust low dimensional superconductivity in thin exfoliated flakes up to 126 nm in thickness (with ∼ 275-400 mK), which constitutes the first report and study of unambiguous superconductivity in a type-I Weyl semimetal.
View Article and Find Full Text PDFWe investigate the charge and thermoelectric transport in modulation-doped large-area rubrene thin-film crystals with different crystal phases. We show that modulation doping allows achieving superior doping efficiencies even for high doping densities, when conventional bulk doping runs into the reserve regime. Modulation-doped orthorhombic rubrene achieves much improved thermoelectric power factors, exceeding 20 μW m K at 80°C.
View Article and Find Full Text PDFWe report a systematic elastoresistivity study on LaFe_{1-x}Co_{x}AsO single crystals, which have well separated structural and magnetic transition lines. All crystals show a Curie-Weiss-like nematic susceptibility in the tetragonal phase. The extracted nematic temperature is monotonically suppressed upon cobalt doping, and changes sign around the optimal doping level, indicating a possible nematic quantum critical point beneath the superconducting dome.
View Article and Find Full Text PDFAnisotropy of transport and magnetic properties of parent compounds of iron based superconductors is a key ingredient of superconductivity. In this work, we investigate in-plane and out-of-plane properties, namely thermal, electric, thermoelectric transport and magnetic susceptibility in a high quality BaFeAs single crystal of the 122 parent compound, using a combined experimental and theoretical approach. Combining the ab initio calculation of the band structure and the measured in-plane and out-of-plane resistivity, we evaluate the scattering rates which turn out to be strongly anisotropic and determined by spin excitations in the antiferromagnetic state.
View Article and Find Full Text PDFWe study the electronic structure of the SmFeAsO F alloy by means of first-principle calculations. We find that, contrary to common believe, F-doping does not change the charge balance between electrons and holes free-carriers in SmFeAsO F . For energies within a narrow energy range accross [Formula: see text], the effect of F-doping on the band structure dispersion is tiny in both the paramagnetic and stripe antiferromagnetic phase.
View Article and Find Full Text PDFIn this Letter we report high-resolution synchrotron x-ray powder diffraction and transmission electron microscope analysis of Mn-substituted LaFeAsO samples, demonstrating that a static incommensurate modulated structure develops across the low-temperature orthorhombic phase, whose modulation wave vector depends on the Mn content. The incommensurate structural distortion is likely originating from a charge-density-wave instability, a periodic modulation of the density of conduction electrons associated with a modulation of the atomic positions. Our results add a new component in the physics of Fe-based superconductors, indicating that the density wave ordering is charge driven.
View Article and Find Full Text PDFJ Phys Condens Matter
July 2014
By making a systematic study of the hydrogen-doped LaFeAsO system by means of dc resistivity, dc magnetometry, and muon-spin spectroscopy, we addressed the question of universality of the phase diagram of rare-earth-1111 pnictides. In many respects, the behaviour of LaFeAsO(1-x)H(x) resembles that of its widely studied F-doped counterpart, with H(-) realizing a similar (or better) electron doping in the LaO planes. In an x = 0.
View Article and Find Full Text PDFWe explore the electronic, transport and thermoelectric properties of Fe Se Te compounds to clarify the mechanisms of superconductivity in Fe-based compounds. We carry out first-principles density functional theory (DFT) calculations of structural, electronic, magnetic and transport properties and measure resistivity, Hall resistance and Seebeck effect curves. All the transport properties exhibit signatures of the structural/magnetic transitions, such as discontinuities and sign changes of the Seebeck coefficient and of the Hall resistance.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.