Publications by authors named "Caglar Elbuken"

Phenylketonuria (PKU) is characterized by an autosomal recessive mutation in the phenylalanine hydroxylase (PAH) gene. Impaired PAH enzyme activity leads to the accumulation of phenylalanine (Phe) and its metabolites in the bloodstream, which disrupts the central nervous system and causes psychomotor retardation. Early diagnosis of PKU is essential for timely intervention.

View Article and Find Full Text PDF

The exceptional ability of liposomes to mimic a cellular lipid membrane makes them invaluable tools in biomembrane studies and bottom-up synthetic biology. Microfluidics provides a promising toolkit for creating giant liposomes in a controlled manner. Nevertheless, challenges associated with the microfluidic formation of double emulsions, as precursors to giant liposomes, limit the full exploration of this potential.

View Article and Find Full Text PDF

Organoids are emerging as a powerful tool to investigate complex biological structures . Vascularization of organoids is crucial to recapitulate the morphology and function of the represented human organ, especially in the case of the kidney, whose primary function of blood filtration is closely associated with blood circulation. Current microfluidic approaches have only provided initial vascularization of kidney organoids, whereas transplantation to animal models is problematic due to ethical problems, with the exception of xenotransplantation onto a chicken chorioallantoic membrane (CAM).

View Article and Find Full Text PDF
Article Synopsis
  • Plant-derived nanovesicles (BNVs) have great potential as biotherapeutics and functional food ingredients, but their large-scale isolation, purification, and storage are challenging.
  • The study introduces a new method using composite all-cellulose membranes that selectively capture and stabilize BNVs through electrostatic and size-exclusion filtration.
  • This method allows for the efficient production, purification, and release of BNVs while maintaining their bioactivity, making it promising for therapeutic applications.
View Article and Find Full Text PDF

Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, RBC storage and subsequent transfusion practices are performed using simplistic workflows.

View Article and Find Full Text PDF

The isolation of extracellular vesicles (EVs) from milk, a complex mixture of colloidal structures having a comparable size to EVs, is challenging. Although ultracentrifugation (UC) has been widely used for EV isolation, this has significant limitations, including a long processing time at high g-force conditions and large sample volume requirements. We introduced a new approach based on nature nanoentities cellulose nanofibers (CNFs) and short time and low g-force centrifugation to isolate EVs from various milk fractions.

View Article and Find Full Text PDF

Extracellular nanovesicles, particularly exosomes, can deliver their diverse bioactive biomolecular content, including miRNAs, proteins, and lipids, thus providing a context for investigating the capability of exosomes to induce stem cells toward lineage-specific cells and tissue regeneration. In this study, it is demonstrated that rat subventricular zone neural stem cell-derived exosomes (rSVZ-NSCExo) can control neural-lineage specification of human mesenchymal stem cells (hMSCs). Microarray analysis shows that the miRNA content of rSVZ-NSCExo is a faithful representation of rSVZ tissue.

View Article and Find Full Text PDF

Low proliferation capacity of corneal endothelial cells (CECs) and worldwide limitations in transplantable donor tissues reveal the critical need of a robust approach for in vitro CEC growth. However, preservation of CEC-specific phenotype with increased proliferation has been a great challenge. Here we offer a biomimetic cell substrate design, by optimizing mechanical, topographical and biochemical characteristics of materials with CEC microenvironment.

View Article and Find Full Text PDF

Corneal endothelial cells (CECs) have limited proliferation ability leading to corneal endothelium (CE) dysfunction and eventually vision loss when cell number decreases below a critical level. Although transplantation is the main treatment method, donor shortage problem is a major bottleneck. The transplantation of in vitro developed endothelial cells with desirable density is a promising idea.

View Article and Find Full Text PDF

Simple, low-cost, robust, and scalable fabrication of microscopic linear barcodes with high levels of complexity and multiple authentication layers is critical for emerging applications in information security and anti-counterfeiting. This manuscript presents a novel approach for fabrication of microscopic linear barcodes that can be visualized under Raman microscopy. Microfluidic channels are used as molds to generate linear patterns of end-grafted polymers on a substrate.

View Article and Find Full Text PDF

The flow behavior of blood is determined mainly by red blood cell (RBC) deformation and aggregation as well as blood viscoelasticity. These intricately interdependent parameters should be monitored by healthcare providers to understand all aspects of circulatory flow dynamics under numerous cases including cardiovascular and infectious diseases. Current medical instruments and microfluidic systems lack the ability to quantify these parameters all at once and in physiologically relevant flow conditions.

View Article and Find Full Text PDF

Under the simultaneous use of pressure-driven flow and DC electric field, migration of particles inside microfluidic channels exhibits intricate focusing dynamics. Available experimental and analytical studies fall short in giving a thorough explanation to particle equilibrium states. Also, the understanding is so far limited to the results based on Newtonian and neutral viscoelastic carrier fluids.

View Article and Find Full Text PDF
Article Synopsis
  • Droplet-based microfluidic systems need precise control over droplet properties for effective analysis, making morphological measurement crucial.
  • Researchers developed a method using coplanar electrodes for real-time measurement of droplet size and velocity through advanced simulations and electric field interactions.
  • They created user-friendly software for live observation and statistical analysis, compared measurement techniques, and evaluated the warm-up time for droplet generators to ensure consistent droplet size for applications.
View Article and Find Full Text PDF

Continuous development of security features is mandatory for the fight against forgery of valuable documents and products, the most notable example being banknotes. Such features demonstrate specific properties under certain stimuli such as fluorescent patterns glowing under ultraviolet light. These security features should also be hard to copy by unlicensed people and be interrogated by anyone using easily accessible tools.

View Article and Find Full Text PDF

Theoretically, by controlling neural membrane potential (V) in vivo, motion, sensation, and behavior can be controlled. Until now, there was no available technique that can increase or decrease ion concentration in vivo in real time to change neural membrane potential. We introduce a method that we coin electro-ionic modulation (EIM), wherein ionic concentration around a nerve can be controlled in real time and in vivo.

View Article and Find Full Text PDF

Elastic nature of the viscoelastic fluids induces lateral migration of particles into a single streamline and can be used by microfluidic based flow cytometry devices. In this study, we investigated focusing efficiency of polyethylene oxide based viscoelastic solutions at varying ionic concentration to demonstrate their use in impedimetric particle characterization systems. Rheological properties of the viscoelastic fluid and particle focusing performance are not affected by ionic concentration.

View Article and Find Full Text PDF

We introduce a droplet-based biomolecular detection platform using robust, versatile, and low-cost superhydrophilic patterned superhydrophobic surfaces. Benefitting from confinement and evaporation-induced shrinkage of droplets on wetted patterns, we show enrichment-based biomolecular detection using very low sample volumes. First, we developed a glucose assay using fluorescent polydopamine (PDA) based on enhancement of PDA emission by hydrogen peroxide (HO) produced in enzyme-mediated glucose oxidation reaction.

View Article and Find Full Text PDF

The process of detection and separation of yeast cells based on their morphological characteristics is critical to the understanding of cell division cycles, which is of vital importance to the understanding of some diseases such as cancer. The traditional process of manual detection is usually tedious and inconsistent. This paper presents a microfluidic device integrated with microvalves for fluid control for the sorting of yeast cells using image processing algorithms and confirmation based on their fluorescent tag.

View Article and Find Full Text PDF

Microflow cytometry is a powerful technique for characterization of particles suspended in a solution. In this work, we present a microflow cytometer based on viscoelastic focusing. 3D single-line focusing of microparticles was achieved in a straight capillary using viscoelastic focusing which alleviated the need for sheath flow or any other actuation mechanism.

View Article and Find Full Text PDF

The erythrocyte sedimentation rate (ESR) is a frequently used 30 min or 60 min clinical test for screening of several inflammatory conditions, infections, trauma, and malignant diseases, as well as non-inflammatory conditions including prostate cancer and stroke. Erythrocyte aggregation (EA) is a physiological process where erythrocytes form face-to-face linear structures, called rouleaux, at stasis or low shear rates. In this work, we proposed a method for ESR measurement from EA.

View Article and Find Full Text PDF

Droplet-based microfluidic systems offer tremendous benefits for high throughput biochemical assays. Despite the wide use of electrical detection for microfluidic systems, application of impedimetric sensing for droplet systems is very limited. This is mainly due to the insulating oil-based continuous phase used for most aqueous samples of interest.

View Article and Find Full Text PDF

This paper proposes a novel method for measuring blood plasma and serum viscosity with a microcantilever-based MEMS sensor. MEMS cantilevers are made of electroplated nickel and actuated remotely with magnetic field using an electro-coil. Real-time monitoring of cantilever resonant frequency is performed remotely using diffraction gratings fabricated at the tip of the dynamic cantilevers.

View Article and Find Full Text PDF

This is the second part of a two-part study on the generation of droplets at a microfluidic T-junction operating in the transition regime. In the preceding paper [Phys. Rev.

View Article and Find Full Text PDF

This is the first part of a two-part study on the generation of droplets at a microfluidic T-junction operating in the transition regime where confinement of the droplet creates a large squeezing pressure that influences droplet formation. In this regime, the operation of the T-junction depends on the geometry of the intersection (height-to-width ratio, inlet width ratio), capillary number, flow ratio, and viscosity ratio of the two phases. Here in paper I we presented our experimental observations through the analysis of high-speed videos of the droplet formation process.

View Article and Find Full Text PDF