Publications by authors named "Cagdas D Onal"

Robot grippers that lack physical compliance have a difficult time dealing with uncertainty, such as fragile objects that may not have well-defined shapes. Existing soft robotic grippers require a large empty workspace for their actuated fingers to curl around the objects of interest, limiting their performance in clutter. This article presents a three-dimensional structure that exhibits negative stiffness in every bending direction used as fingers in a class of soft robotic grippers.

View Article and Find Full Text PDF

Snakes are a remarkable source of inspiration for mobile search-and-rescue robots. Their unique slender body structure and multiple modes of locomotion are well-suited to movement in narrow passages and other difficult terrain. The design, manufacturing, modeling, and control techniques of soft robotics make it possible to imitate the structure, mechanical properties, and locomotion gaits of snakes, opening up new possibilities in robotics research.

View Article and Find Full Text PDF

Snake robotics is an important research topic with a wide range of applications, including inspection in confined spaces, search-and-rescue, and disaster response. Snake robots are well-suited to these applications because of their versatility and adaptability to unstructured and constrained environments. In this paper, we introduce a soft pneumatic robotic snake that can imitate the capabilities of biological snakes, its soft body can provide flexibility and adaptability to the environment.

View Article and Find Full Text PDF

Continuum robot arms, with their hyper-redundant continuously deformable bodies, show great promise in applications deemed impossible for traditional rigid robot arms with discrete links and joints, such as navigating tight corners without getting stuck. However, existing continuum robots suffer from excessive twisting when subjected to offset loading, even resulting from their own body weight, which reduces their dexterity and precision. In this work, we present a continuum manipulator that is capable of providing passive torsional stiffness through an origami-inspired modular design, remedying the non-controllable twist typically present in continuum robots.

View Article and Find Full Text PDF

Despite offering many advantages over traditional rigid actuators, soft pneumatic actuators suffer from a lack of comprehensive, computationally efficient models and precise embedded control schemes without bulky flow-control valves and extensive computer hardware. In this article, we consider an inexpensive and reliable soft linear actuator, called the reverse pneumatic artificial muscle (rPAM), which consists of silicone rubber that is radially constrained by symmetrical double-helix threading. We describe analytical and numerical static models of this actuator, and compare their performance against experimental results.

View Article and Find Full Text PDF

Advances in soft robotics provide a unique approach for delivering haptic feedback to a user by a soft wearable device. Such devices can apply forces directly on the human joints, while still maintaining the safety and flexibility necessary for use in close proximity to the human body. To take advantage of these properties, we present a new haptic wrist device using pressure-driven soft actuators called reverse pneumatic artificial muscles (rPAMs) mounted on four sides of the wrist.

View Article and Find Full Text PDF

Real-world environments are complex, unstructured, and often fragile. Soft robotics offers a solution for robots to safely interact with the environment and human coworkers, but suffers from a host of challenges in sensing and control of continuously deformable bodies. To overcome these challenges, this article considers a modular soft robotic architecture that offers proprioceptive sensing of pressure-operated bending actuation modules.

View Article and Find Full Text PDF

This study demonstrates a new approach to autonomous folding for the body of a 3D robot from a 2D sheet, using heat. We approach this challenge by folding a 0.27-mm sheetlike material into a structure.

View Article and Find Full Text PDF

Soft robotic snakes promise significant advantages in achieving traveling curvature waves with a reduced number of active segments as well as allowing for safe and adaptive interaction with the environment and human users. However, current soft robot platforms suffer from a lack of accurate theoretical dynamic models and proprioceptive measurements, which impede advancements toward full autonomy. To address this gap, this paper details our recent results on the design, fabrication, and experimental evaluation of a new-generation pressure-operated soft robotic snake platform we call the WPI SRS, which employs custom magnetic sensors embedded in a flexible backbone to continuously monitor the curvature of each of its four bidirectional bending segments.

View Article and Find Full Text PDF

In this work we describe an autonomous soft-bodied robot that is both self-contained and capable of rapid, continuum-body motion. We detail the design, modeling, fabrication, and control of the soft fish, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish.

View Article and Find Full Text PDF

Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source.

View Article and Find Full Text PDF

In this work, calibration and correction of cross-talk in atomic force microscopy (AFM) is demonstrated. Several reasons and effects of this inherent problem on experimental results are discussed. We propose a general procedure that can be used on most AFM systems to compensate for cross-talk on the cantilever bending and twisting signals.

View Article and Find Full Text PDF