Front Endocrinol (Lausanne)
November 2022
Efforts to understand the morphogenesis of complex craniofacial structures have largely focused on the role of chondrocytes and osteoblasts. Along with these bone-creating cells, bone-resorbing osteoclasts are critical in homeostasis of adult skeletal structures, but there is currently limited information on their role in the complex morphogenetic events of craniofacial development. Fundamental aspects of skull formation and general skeletal development are conserved from zebrafish to mammals.
View Article and Find Full Text PDFThe use of genetics has been invaluable in defining the complex mechanisms of aging and longevity. Zebrafish, while a prominent model for vertebrate development, have not been used systematically to address questions of how and why we age. In a mutagenesis screen focusing on late developmental phenotypes, we identified a new mutant that displays aging phenotypes at young adult stages.
View Article and Find Full Text PDFEvolution is replete with reuse of genes in different contexts, leading to multifunctional roles of signaling factors during development. Here, we explore osteoclast regulation during skeletal development through analysis of colony-stimulating factor 1 receptor () function in the zebrafish. A primary role of Csf1r signaling is to regulate the proliferation, differentiation and function of myelomonocytic cells, including osteoclasts.
View Article and Find Full Text PDFG protein-coupled receptor 137b (GPR137b) is an orphan seven-pass transmembrane receptor of unknown function. In mouse, Gpr137b is highly expressed in osteoclasts in vivo and is upregulated during in vitro differentiation. To elucidate the role that GPR137b plays in osteoclasts, we tested the effect of GPR137b deficiency on osteoclast maturation and resorbing activity.
View Article and Find Full Text PDFInactivating mutations in the ubiquitously expressed membrane trafficking component GMAP-210 (encoded by ) cause achondrogenesis type 1A (ACG1A). ACG1A is surprisingly tissue specific, mainly affecting cartilage development. Bone development is also abnormal, but as chondrogenesis and osteogenesis are closely coupled, this could be a secondary consequence of the cartilage defect.
View Article and Find Full Text PDFRMD Open
July 2017
Objective: Rheumatoid arthritis (RA) is a systemic, immune-mediated inflammatory disease that ultimately leads to bone erosions and joint destruction. Methotrexate (MTX) slows bone damage but the mechanism by which it acts is still unknown. In this study, we aimed to assess the effect of MTX and low-dose prednisolone (PDN) on circulating osteoclast (OC) precursors and OC differentiation in patients with RA.
View Article and Find Full Text PDFDominant negative mutations in CLCN7, which encodes a homodimeric chloride channel needed for matrix acidification by osteoclasts, cause Albers-Schönberg disease (also known as autosomal dominant osteopetrosis type 2). More than 25 different CLCN7 mutations have been identified in patients affected with Albers-Schönberg disease, but only one mutation (Clcn7) has been introduced in mice to create an animal model of this disease. Here we describe a mouse with a different osteopetrosis-causing mutation (Clcn7).
View Article and Find Full Text PDFWe recently developed base editing, a genome-editing approach that enables the programmable conversion of one base pair into another without double-stranded DNA cleavage, excess stochastic insertions and deletions, or dependence on homology-directed repair. The application of base editing is limited by off-target activity and reliance on intracellular DNA delivery. Here we describe two advances that address these limitations.
View Article and Find Full Text PDF. Tumor necrosis factor (TNF) increases circulating osteoclast (OC) precursors numbers by promoting their proliferation and differentiation. The aim of this study was to assess the effect of TNF inhibitors (TNFi) on the differentiation and activity of OC in rheumatoid arthritis (RA) patients.
View Article and Find Full Text PDFIntroduction: Ankylosing spondylitis (AS) is typically characterized by focal bone overgrowth and also by systemic bone loss. We hypothesize that the increased osteoproliferation found in AS might be partially due to reduced ability of osteoclast precursors (OCPs) to differentiate into osteoclasts (OCs). Therefore, our aim was to characterize bone remodeling and pro-osteoclastogenesis inflammatory environment, monocytes' phenotype, and osteoclast differentiation in AS patients.
View Article and Find Full Text PDFIntroduction: Ankylosing Spondylitis (AS) is characterized by excessive local bone formation and concomitant systemic bone loss. Tumor necrosis factor (TNF) plays a central role in the inflammation of axial skeleton and enthesis of AS patients. Despite reduction of inflammation and systemic bone loss, AS patients treated with TNF inhibitors (TNFi) have ongoing local bone formation.
View Article and Find Full Text PDFBackground: It is well established that males have lower fracture risk in comparison with females, which suggests a higher bone resistance in men. The aim of our study was to find out if in older patients with hip fragility fractures, gender has also an impact on trabecular bone material behaviour, specifically to determine whether trabecular mechanical properties under compressive loading differ between men and women who suffered a fragility hip fracture.
Methods: Femoral epiphyses were consecutively collected during hip replacement surgery due to proximal femur fragility fracture.
Bone histomorphometry is defined as a quantitative evaluation of bone micro architecture, remodelling and metabolism. Bone metabolic assessment is based on a dynamic process, which provides data on bone matrix formation rate by incorporating a tetracycline compound. In the static evaluation, samples are stained and a semi-automatic technique is applied in order to obtain bone microarchitectural parameters such as trabecular area, perimeter and width.
View Article and Find Full Text PDFObjective: The association of non-MHC genes with AS has been recently suggested. We aimed to investigate the association of the ERAP1, IL23R and TNFSF15 regions and the susceptibility to and protection from AS in HLA-B27-positive individuals.
Methods: A total of 200 unrelated AS patients and 559 healthy unrelated subjects, all HLA-B27 positive, were tested.
Our aim was to compare bone gene expression in rheumatoid arthritis (RA) and primary osteoporosis (OP) patients. Secondary aims were to determine the association of gene expression of the Wnt/β-catenin signaling pathway with inflammatory cytokines in the bone microenvironment and to assess the serum levels of Wnt/β-catenin proteins in both groups. RA patients referred for hip replacement surgery were recruited.
View Article and Find Full Text PDFIntroduction: Osteocalcin (OC) is the most abundant non-collagenous bone protein and is determinant for bone mineralization. We aimed to compare OC bone expression and serum factors related to its carboxylation in hip fragility fracture and osteoarthritis patients. We also aimed to identify which of these factors were associated with worse mechanical behavior and with the hip fracture event.
View Article and Find Full Text PDFClinical risk factors (CRFs) are established predictors of fracture events. However, the influence of individual CRFs on trabecular mechanical fragility is still a subject of debate. In this study, we aimed to assess differences, adjusted for CRFs, between bone macrostructural parameters measured in ex-vivo specimens from hip fragility fracture patients and osteoarthritis patients, and to determine whether individual CRFs could predict trabecular bone mechanical behavior in hip fragility fractures.
View Article and Find Full Text PDFObjective: Rheumatoid arthritis (RA) is associated with higher levels of inflammatory mediators and with a more atherogenic lipid profile. Dyslipidemia can be present years before arthritis develops. Lymphotoxin-α (LTA) is a cytokine that mediates proinflammatory responses while also participating in lipid homeostasis, and its transcriptional activity is in part genetically determined.
View Article and Find Full Text PDFBackground: Fracture healing is orchestrated by a specific set of events that culminates in the repair of bone and reachievement of its biomechanical properties. The aim of our work was to study the sequence of gene expression events involved in inflammation and bone remodeling occurring in the early phases of callus formation in osteoporotic patients.
Methodology/principal Findings: Fifty-six patients submitted to hip replacement surgery after a low-energy hip fracture were enrolled in this study.
Objective: To characterize circulating B-cell subpopulations of arthritis patients with <6 weeks of disease duration.
Methods: Peripheral blood samples were collected from very early untreated polyarthritis patients, with <6 weeks of disease duration, for flow cytometric evaluation of B-cell subpopulations. Samples from patients who were later diagnosed as RA [very early RA (VERA)] were also collected 4-6 weeks after starting a low dose of prednisone (5-10 mg) and 4 months after reaching the minimum effective dose of MTX.
Arthritis Res Ther
August 2010
Introduction: In this study we used a mice model of chronic arthritis to evaluate if bone fragility induced by chronic inflammation is associated with an imbalance in bone turnover and also a disorganization of the bone type I collagen network.
Methods: Serum, vertebrae and femur bones were collected from eight-month-old polyarthritis SKG mice and controls. Strength of the femoral bones was evaluated using three-point bending tests and density was assessed with a pycnometer.