Holographic microscopes are emerging as suitable tools for diagnostics and environmental monitoring, providing high-throughput, label-free, quantitative imaging capabilities through small and compact devices. In-line holographic microscopes can be realized at contained costs, trading off complexity in the phase retrieval process and being limited to sparse samples. Here we present a 3D printed, cost effective and field portable off-axis holographic microscope based on the concept of holographic microfluidic slide.
View Article and Find Full Text PDFThe combined use of ultrasound radiation and microfluidics is a promising tool for aiding the development of lab-on-a-chip devices. In this study, we show that the rotation of linear aggregates of micro-particles can be achieved under the action of acoustic field pressure. This novel manipulation is investigated by tracking polystyrene beads of different sizes through the 3D imaging features of digital holography (DH).
View Article and Find Full Text PDFThe development of techniques able to characterize and map the pressure field is crucial for the widespread use of acoustofluidic devices in biotechnology and lab-on-a-chip platforms. In fact, acoustofluidic devices are powerful tools for driving precise manipulation of microparticles and cells in microfluidics in non-contact modality. Here, we report a full and accurate characterization of the movement of particles subjected to acoustophoresis in a microfluidic environment by holographic imaging.
View Article and Find Full Text PDFThe integration of digital holography (DH) imaging and the acoustic manipulation of micro-particles in a microfluidic environment is investigated. The ability of DH to provide efficient 3D tracking of particles inside a microfluidic channel is exploited to measure the position of multiple objects moving under the effect of stationary ultrasound pressure fields. The axial displacement provides a direct verification of the numerically computed positions of the standing wave's node, while the particles' transversal movement highlights the presence of nodes in the planar direction.
View Article and Find Full Text PDFSingle-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated.
View Article and Find Full Text PDFWe have studied the formation of topological defects in liquid crystal (LC) matrices induced by multiwalled carbon nanotubes (MWCNTs) and external electric fields. The defects are ascribable to a distortion of the LC molecular director in proximity of the MWCNT surface. The system is analyzed macroscopically using spectroscopic variable angle ellipsometry.
View Article and Find Full Text PDF