Publications by authors named "Cabelli D"

Article Synopsis
  • The role of low molecular weight ligands like L-histidine in the maturation of metalloenzymes, particularly NiSOD, is not well understood.
  • Evidence shows that L-histidine is involved in the processing of the proenzyme SodN by the protease SodX, aiding in the formation of a nickel-binding site.
  • This process highlights that L-histidine may act similarly to a metallochaperone, either fulfilling that role or making it unnecessary for the maturation of nickel-dependent superoxide dismutase.
View Article and Find Full Text PDF

The N-terminus of nickel-dependent superoxide dismutase (NiSOD) forms a structural motif known as the "Ni-hook," where the peptide wraps around the metal to bring cysteine-2 and cysteine-6 into spatial proximity, allowing these residues to coordinate in a cis-geometry. A highly conserved proline-5 residue in the Ni-hook adopts a cis-conformation that is widely considered important for its formation. Herein, we investigate this role by point mutation of Pro5 to alanine.

View Article and Find Full Text PDF

Copper (Cu)-only superoxide dismutases (SOD) represent a newly characterized class of extracellular SODs important for virulence of several fungal pathogens. Previous studies of the Cu-only enzyme SOD5 from the opportunistic fungal pathogen have revealed that the active-site structure and Cu binding of SOD5 strongly deviate from those of Cu/Zn-SODs in its animal hosts, making Cu-only SODs a possible target for future antifungal drug design. also expresses a Cu-only SOD4 that is highly similar in sequence to SOD5, but is poorly characterized.

View Article and Find Full Text PDF

Superoxide dismutases (SODs) utilize a ping-pong mechanism in which a redox-active metal cycles between oxidized and reduced forms that differ by one electron to catalyze the disproportionation of superoxide to dioxygen and hydrogen peroxide. Nickel-dependent SOD (NiSOD) is a unique biological solution for controlling superoxide levels. This enzyme relies on the use of cysteinate ligands to bring the Ni(III/II) redox couple into the range required for catalysis (∼300 mV vs.

View Article and Find Full Text PDF

In eukaryotes the bimetallic Cu/Zn superoxide dismutase (SOD) enzymes play important roles in the biology of reactive oxygen species by disproportionating superoxide anion. Recently, we reported that the fungal pathogen Candida albicans expresses a novel copper-only SOD, known as SOD5, that lacks the zinc cofactor and electrostatic loop (ESL) domain of Cu/Zn-SODs for substrate guidance. Despite these abnormalities, C.

View Article and Find Full Text PDF

Unlabelled: Bacterial pathogens Neisseria meningitidis and Brucella abortus pose threats to human and animal health worldwide, causing meningococcal disease and brucellosis, respectively. Mortality from acute N. meningitidis infections remains high despite antibiotics, and brucellosis presents alimentary and health consequences.

View Article and Find Full Text PDF

C. elegans MnSOD-3 has been implicated in the longevity pathway and its mechanism of catalysis is relevant to the aging process and carcinogenesis. The structures of MnSOD-3 provide unique crystallographic evidence of a dynamic region of the tetrameric interface (residues 41-54).

View Article and Find Full Text PDF

Computational investigations have implicated the amidate ligand in nickel superoxide dismutase (NiSOD) in stabilizing Ni-centered redox catalysis and in preventing cysteine thiolate ligand oxidation. To test these predictions, we have used an experimental approach utilizing a semisynthetic scheme that employs native chemical ligation of a pentapeptide (HCDLP) to recombinant S. coelicolor NiSOD lacking these N-terminal residues, NΔ5-NiSOD.

View Article and Find Full Text PDF

The reactions of the carbonate radical anion (CO3 (.) (-) ) with vitamin B12 derivatives were studied by pulse radiolysis. The carbonate radical anion directly oxidizes the metal center of cob(II)alamin quantitively to give hydroxycobalamin, with a bimolecular rate constant of 2.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of hydrogen bonding in the structure and function of nickel-dependent superoxide dismutases (NiSODs), highlighting an important interaction between the imidazole ligand from His1 and the carboxylate of Glu17.
  • Four mutant NiSOD proteins were created to test the significance of this hydrogen bonding network, revealing that the absence of these interactions can lead to disorder in the enzyme's active site, but some activity is still retained.
  • The findings suggest that the Glu17-His1 hydrogen bond is crucial not only for redox tuning but also for maintaining the structural integrity of the active site’s "Ni-hook" motif essential for its function.
View Article and Find Full Text PDF

Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the -EKHVP- motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network.

View Article and Find Full Text PDF

Although now recognized to be an important reactive nitrogen species in biological systems that modifies the structures of proteins, DNA and lipids, there are few studies on the reactivity of NO2, including the reactions between NO2 and transition metal complexes. We report kinetic studies on the reactions of NO2 with two forms of vitamin B12 - cob(II)alamin and nitrocobalamin. UV-visible spectroscopy and HPLC analysis of the product solution show that NO2 cleanly oxidizes the metal center of cob(II)alamin to form nitrocobalamin, with a second-order rate constant of (3.

View Article and Find Full Text PDF

The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type.

View Article and Find Full Text PDF

The human fungal pathogens Candida albicans and Histoplasma capsulatum have been reported to protect against the oxidative burst of host innate immune cells using a family of extracellular proteins with similarity to Cu/Zn superoxide dismutase 1 (SOD1). We report here that these molecules are widespread throughout fungi and deviate from canonical SOD1 at the primary, tertiary, and quaternary levels. The structure of C.

View Article and Find Full Text PDF

O₂.- scavenger: The rate constant for the rapid reaction of the ROS superoxide with the reduced vitamin B₁₂ radical complex cob(II)alamin was directly determined to be 3.8×10(8) M⁻¹ s⁻¹.

View Article and Find Full Text PDF

Two yeast manganese superoxide dismutases (MnSOD), one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), have most biochemical and biophysical properties in common, yet ScMnSOD is a tetramer and CaMnSODc is a dimer or "loose tetramer" in solution. Although CaMnSODc was found to crystallize as a tetramer, there is no indication from the solution properties that the functionality of CaMnSODc in vivo depends upon the formation of the tetrameric structure. To elucidate further the functional significance of MnSOD quaternary structure, wild-type and mutant forms of ScMnSOD (K182R, A183P mutant) and CaMnSODc (K184R, L185P mutant) with the substitutions at dimer interfaces were analyzed with respect to their oligomeric states and resistance to pH, heat, and denaturant.

View Article and Find Full Text PDF

Reduction of superoxide (O2-) by manganese-containing superoxide dismutase occurs through either a "prompt protonation" pathway, or an "inner-sphere" pathway, with the latter leading to formation of an observable Mn-peroxo complex. We recently reported that wild-type (WT) manganese superoxide dismutases (MnSODs) from Saccharomyces cerevisiae and Candida albicans are more gated toward the "prompt protonation" pathway than human and bacterial MnSODs and suggested that this could result from small structural changes in the second coordination sphere of manganese. We report here that substitution of a second-sphere residue, Tyr34, by phenylalanine (Y34F) causes the MnSOD from S.

View Article and Find Full Text PDF

Nonenzymatic manganese was first shown to provide protection against superoxide toxicity in vivo in 1981, but the chemical mechanism responsible for this protection subsequently became controversial due to conflicting reports concerning the ability of Mn to catalyze superoxide disproportionation in vitro. In a recent communication, we reported that low concentrations of a simple Mn phosphate salt under physiologically relevant conditions will indeed catalyze superoxide disproportionation in vitro. We report now that two of the four Mn complexes that are expected to be most abundant in vivo, Mn phosphate and Mn carbonate, can catalyze superoxide disproportionation at physiologically relevant concentrations and pH, whereas Mn pyrophosphate and citrate complexes cannot.

View Article and Find Full Text PDF

Two isomers, [Ru(1)]2+ (Ru = Ru(bpy)2, bpy = 2,2'-bipyridine, 1 = 2-(pyrid-2'-yl)-1-azaacridine) and [Ru(2)]2+ (2 = 3-(pyrid-2'-yl)-4-azaacridine), are bioinspired model compounds containing the nicotinamide functionality and can serve as precursors for the photogeneration of C-H hydrides for studying reactions pertinent to the photochemical reduction of metal-C1 complexes and/or carbon dioxide. While it has been shown that the structural differences between the azaacridine ligands of [Ru(1)]2+ and [Ru(2)]2+ have a significant effect on the mechanism of formation of the hydride donors, [Ru(1HH)]2+ and [Ru(2HH)]2+, in aqueous solution, we describe the steric implications for proton, net-hydrogen-atom and net-hydride transfer reactions in this work. Protonation of [Ru(2*-)] in aprotic and even protic media is slow compared to that of [Ru(1*-)]+.

View Article and Find Full Text PDF

Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O(2)(-)). This behavior limits the amount of H(2)O(2) produced at high [O(2)(-)]; its desirability can be explained by the multiple roles of H(2)O(2) in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized.

View Article and Find Full Text PDF

Unlike superoxide dismutases (SODs), superoxide reductases (SORs) eliminate superoxide anion (O(2)(•-)) not through its dismutation, but via reduction to hydrogen peroxide (H(2)O(2)) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR(Gi)) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry.

View Article and Find Full Text PDF

Manganese superoxide dismutase (MnSOD) from different species differs in its efficiency in removing high concentrations of superoxide (O(2)(-)), due to different levels of product inhibition. Human MnSOD exhibits a substantially higher level of product inhibition than the MnSODs from bacteria. In order to investigate the mechanism of product inhibition and whether it is a feature common to eukaryotic MnSODs, we purified MnSOD from Saccharomyces cerevisiae (ScMnSOD).

View Article and Find Full Text PDF

The pH-dependent mechanism of the reduction of the nicotinamide adenine dinucleotide (NADH) model complex [Ru(bpy)(2)(5)](2+) (5 = 3-(pyrid-2'-yl)-4-azaacridine) was compared to the mechanism of the previously studied geometric isomer [Ru(bpy)(2)(pbn)](2+) (pbn = 2-(pyrid-2'-yl)-1-azaacridine, previously referred to as 2-(pyrid-2'-yl)-benzo[b]-1,5-naphthyridine) in aqueous media. The exposure of [Ru(bpy)(2)(5)](2+) to CO(2)(*-) leads to the formation of the one-electron reduced species (k = 4.4 x 10(9) M(-1) s(-1)).

View Article and Find Full Text PDF