Publications by authors named "Cabal B"

This study evaluates the dynamic shift in the microbiota at the peri-implant site of titanium (Ti) and zirconia (Zr) implants subjected to experimental peri-implantitis (PI) and, for the first time, of implants made of ceria-stabilized alumina-reinforced zirconia (Ce-TZP/Al), a revolutionary zirconia that is set to play a key role in modern implant dentistry. One- and two-piece (TP) implants, including Ce-TZP/AL TP/G3 glass, were placed bilaterally (six implants/side) in five beagle dogs to mimic a natural vs. ligature-induced PI following a split-mouth design.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess the effectiveness and tolerability of fenfluramine (FFA) in treating Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS) in real-world clinical settings from 2018 to 2022.
  • Among the 56 patients analyzed, 58% achieved a significant reduction in seizures, with 10% experiencing complete seizure freedom, while notable cognitive and social improvements were observed in a majority of patients.
  • Almost 60% of patients reported adverse events related to FFA, mostly mild and self-resolving, with a rare serious event noted that was not directly linked to the treatment.
View Article and Find Full Text PDF

MOGHE is defined as mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Approximately half of the patients with histopathologically confirmed MOGHE carry a brain somatic variant in the SLC35A2 gene encoding a UDP-galactose transporter. Previous research showed that D-galactose supplementation results in clinical improvement in patients with a congenital disorder of glycosylation due to germline variants in SLC35A2.

View Article and Find Full Text PDF

The choice of suitable materials and new designs in oral implantology and the subsequent enhancement of the characteristics of the dental implant developed is an important research topic with wide scope. The present work aims to develop a new multifunctional zirconia-ceria/alumina (Ce-TZP/AlO) composite with an antimicrobial glass-based coating to be used in multi-unit abutments compatible with commercially available Ti implants for peri-implantitis prevention. An airbrush spraying technique was effectively applied to coat the sintered ceramic composite starting from a glass powder suspension.

View Article and Find Full Text PDF

Inorganic materials can provide a set of tools to decontaminate solid, liquid or air containing viral particles. The use of disinfectants can be limited or not practical in scenarios where continuous cleaning is not feasible. Physicochemical differences between viruses raise the need for effective formulations for all kind of viruses.

View Article and Find Full Text PDF

Current endodontic procedures continue to be unsuccessful for completely removing pathogens present inside the root canal system, which can lead to recurrent infections. In this study, we aimed to assess the antimicrobial capacity and tissue response of two inorganic bactericidal additives incorporated into a paste root canal sealer on contaminated root dentin in vivo. An experimental study was performed in 30 teeth of five Beagle dogs.

View Article and Find Full Text PDF

Objectives: To compare biofilm formation on the surface of different ceramic biomaterials to be used in implant dentistry.

Methods: In vitro biofilm formation was investigated from mixtures of standard reference strains of Streptococcus oralis, Veillonella parvula, Actinomyces naeslundii, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Sterile ceramic calcium hydroxyapatite discs (HA) as control, sterile AlO/Ce-TZP nanocomposite sandblasted discs (material A1) and sterile AlO/Ce-TZP nanocomposite sandblasted discs and coated with two types of antimicrobial glasses (materials A2 and A3) were used.

View Article and Find Full Text PDF

This study investigates a novel approach to controlling biofilms of the most frequent pathogens implicated in the etiology of biomaterials-associated infections. New bactericidal filler based on a non-toxic glass, belonging to BO-SiO-AlO-NaO-ZnO system, was used to formulate composites of the most widely used polymers in biomedical applications [i.e.

View Article and Find Full Text PDF

The idea of permanent tooth replacement goes back to the year 2000 BC at least, when carved bamboo pegs were used to replace missing teeth in ancient China. The phenomenon of osseointegration, however, was not verified until the mid-1960s, when Branemark discovered that titanium could integrate to bone. Since then, the osseointegration capacity of implants has been profoundly investigated and implants as such have evolved enormously in all possible aspects, from material selection and processing to specific surface engineering, among many others.

View Article and Find Full Text PDF

The dissolution of an antimicrobial ZnO-glass in the form of powder and in the form of sintered pellets were studied in water, artificial seawater, biological complex media such as common bacterial/yeast growth media (Luria Bertani (LB), yeast extract, tryptone), and human serum. It has been established that the media containing amino acids and proteins produce a high lixiviation of Zn from the glass due to the ability of zinc and zinc oxide to react with amino acids and proteins to form complex organic compounds. The process of Zn lixiviation from the glass network has been studied by X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Bacterial and fungal infections remain a major clinical challenge. Implant infections very often require complicated revision procedures that are troublesome to patients and costly to the healthcare system. Innovative approaches to tackle infections are urgently needed.

View Article and Find Full Text PDF

Two types of antimicrobial glass fibers containing ZnO and CaO, with diameters ranging from tens of nanometers to 1 µm, were successfully fabricated by a laser spinning technique. The antimicrobial performance was corroborated according to ISO 20743:2013, by using gram-negative (Escherichia coli) and gram-positive (Streptococcus oralis, Streptococcus mutans and Staphylococcus aureus) bacteria, and yeast (Candida krusei) (more than 3 logs of reduction). The metabolic activity and endosomal system of eukaryotic cells were not altered by using eluents of CaO glass submicrometric fibers and ZnO fibers at 1 : 10 dilution as cellular media (viability rates over 70%).

View Article and Find Full Text PDF

Objectives: The aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss.

Methods: Mandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch.

View Article and Find Full Text PDF

A new family of non-toxic biocides based on low melting point (1250°C) transparent glasses with high content of ZnO (15-40wt%) belonging to the miscibility region of the B2O3-SiO2-Na2O-ZnO system has been developed. These glasses have shown an excellent biocide activity (logarithmic reduction >3) against Gram- (E. coli), Gram+ (S.

View Article and Find Full Text PDF

The present work presents new bactericidal coatings, based on two families of non-toxic, antimicrobial glasses belonging to B2O3-SiO2-Na2O-ZnO and SiO2-Na2O-Al2O3-CaO-B2O3 systems. Free of cracking, single layer direct coatings on different biomedical metallic substrates (titanium alloy, Nb, Ta, and stainless steel) have been developed. Thermal expansion mismatch was adjusted by changing glass composition of the glass type, as well as the firing atmosphere (air or Ar) according to the biomedical metallic substrates.

View Article and Find Full Text PDF

In the attempt to find valid alternatives to classic antibiotics and in view of current limitations in the efficacy of antimicrobial-coated or loaded biomaterials, this work is focused on the development of a new glass-ceramic with antibacterial performance together with safe biocompatibility. This bactericidal glass-ceramic composed of combeite and nepheline crystals in a residual glassy matrix has been obtained using an antimicrobial soda-lime glass as a precursor. Its inhibitory effects on bacterial growth and biofilm formation were proved against five biofilm-producing reference strains.

View Article and Find Full Text PDF

The aim of the present study was to evaluate bone loss at implants connected to abutments coated with a soda-lime glass containing silver nanoparticles, subjected to experimental peri-implantitis. Also the aging and erosion of the coating in mouth was studied. Five beagle dogs were used in the experiments.

View Article and Find Full Text PDF

Nanocomposites made of non-woven glass fibres with diameters ranging from tens of nanometers up to several micrometers, containing silver nanoparticles, were successfully fabricated by the laser spinning technique. Pellets of a soda-lime silicate glass containing silver nanoparticles with varying concentrations (5 and 10 wt%) were used as a precursor. The process followed to obtain the silver nanofibres did not agglomerate significantly the metallic nanoparticles, and the average particle size is still lower than 50 nm.

View Article and Find Full Text PDF

The objective of the present study is to evaluate bone loss at implant abutments coated with a soda-lime glass containing silver nanoparticles subjected to experimental peri-implantitis. Five beagle dogs were used in the experiments, 3 implants were installed in each quadrant of the mandibles. Glass/n-Ag coted abutments were connected to implant platform.

View Article and Find Full Text PDF

This paper reports the effect of soda-lime-glass-nAg coating on the viability of an in vitro biofilm of Streptococcus oralis. Three strains (ATCC 35037 and two clinical isolates from periodontitis patients) were grown on coated with glass, glass containing silver nanoparticles, and uncoated titanium alloy disks. Two different methods were used to quantify biofilm formation abilities: crystal violet staining and determination of viable counts.

View Article and Find Full Text PDF

Two different methods to obtain silver nanoparticles supported on kaolin crystals have been performed: the first one followed a thermal reduction and the second one a chemical reduction. In both cases, the silver nanoparticles with two different average particles size (ca.12 and 30 nm) were perfectly isolated and attached to the surface of the kaolin plates.

View Article and Find Full Text PDF

The purpose of this work was to explore the kinetics of naphthalene adsorption on an activated carbon from aqueous and organic solutions. Kinetic curves were fitted to different theoretical models, and the results have been discussed in terms of the nature and properties of the solvents, the affinity of naphthalene to the solutions, and the accessibility to the porosity of the activated carbon. Data was fitted to the pseudo-second order kinetic model with good correlation coefficients for all the solution media.

View Article and Find Full Text PDF

The purpose of this work is to explore steam reactivation at moderate temperatures of activated carbon exhausted with phenol, a highly toxic compound frequently present in industrial wastewater. The spent carbon was treated with steam at various temperatures (450, 600 and 850 degrees C) and times (from 5 to 60 min). Promising results were obtained by applying moderate temperatures and times.

View Article and Find Full Text PDF

The preparation of activated carbons from bean pods waste by chemical (K(2)CO(3)) and physical (water vapor) activation was investigated. The carbon prepared by chemical activation presented a more developed porous structure (surface area 1580 m(2) g(-1) and pore volume 0.809 cm(3) g(-1)) than the one obtained by water vapor activation (258 m(2) g(-1) and 0.

View Article and Find Full Text PDF