Publications by authors named "Caasy Thomas-Porch"

Decellularized tissues are gaining popularity as scaffolds for tissue engineering; they allow cell attachment, proliferation, differentiation, and are non-immunogenic. Adipose tissue is an abundant resource that can be decellularized and converted in to a bio-scaffold. Several methods have been developed for adipose tissue decellularization, typically starting with freeze thaw cycles, followed by washes with hypotonic/hypertonic sodium chloride solution, isopropanol, detergent (SDS, SDC and Triton X-100) and trypsin digestion.

View Article and Find Full Text PDF

Decellularized human adipose tissue has potential clinical utility as a processed biological scaffold for soft tissue cosmesis, grafting, and reconstruction. Adipose tissue decellularization has been accomplished using enzymatic-, detergent-, and/or solvent-based methods. To examine the hypothesis that distinct decellularization processes may yield scaffolds with differing compositions, the current study employed mass spectrometry to compare the proteomes of human adipose-derived matrices generated through three independent methods combining enzymatic-, detergent-, and/or solvent-based steps.

View Article and Find Full Text PDF

Annually, more than 200,000 elective liposuction procedures are performed in the United States and over a million worldwide. The ease of harvest and abundance make human adipose-derived stromal/stem cells (hASCs) isolated from lipoaspirates an attractive, readily available source of adult stem cells that have become increasingly popular for use in many studies. Here, we describe common methods for hASC culture, preservation, and osteogenic differentiation.

View Article and Find Full Text PDF

Throughout life, a balance exists within the marrow cavity between adipose tissue and bone. Each tissue derives from a common progenitor cell known both as a "bone marrow-derived multipotent stromal cell" and as a "mesenchymal stem cell" (BMSC). The majority of in vitro and in vivo data suggest that BMSCs differentiate into adipocytes or osteoblasts in a reciprocal manner.

View Article and Find Full Text PDF

Until recently, the complexity of adipose tissue and its physiological role was not well appreciated. This changed with the discovery of adipokines such as leptin. The cellular composition of adipose tissue is heterogeneous and changes as a function of diabetes and disease states such as diabetes.

View Article and Find Full Text PDF