Publications by authors named "CW Greer"

Article Synopsis
  • Canadian Arctic summer sea ice is declining significantly due to global warming, which is opening up the Northwest Passage as a new shipping route, increasing the risk of oil spills and environmental damage.
  • Research focuses on evaluating bioremediation techniques for cleaning hydrocarbon contamination in Arctic beach sediments, involving 32- and 92-day experiments that analyzed the impacts of nutrient additions and a surface washing agent on microbial communities.
  • Findings indicate that while nutrients show limited benefits for biodegradation, a surface washing agent emerges as a promising approach, highlighting the potential of unconventional microorganisms in effectively degrading hydrocarbons.
View Article and Find Full Text PDF

Acid mine drainage (AMD) is considered as one of the most important global environmental challenges. Therefore, understanding the impact of AMD on the diversity of microbial communities associated with native plants is important for phytoremediation. In this study, the community assembly and microbial diversity associated with native plants growing along an AMD impact gradient was investigated using metabarcoding and high throughput iChip technique.

View Article and Find Full Text PDF

Background: Decreasing sea ice coverage across the Arctic Ocean due to climate change is expected to increase shipping activity through previously inaccessible shipping routes, including the Northwest Passage (NWP). Changing weather conditions typically encountered in the Arctic will still pose a risk for ships which could lead to an accident and the uncontrolled release of hydrocarbons onto NWP shorelines. We performed a metagenomic survey to characterize the microbial communities of various NWP shorelines and to determine whether there is a metabolic potential for hydrocarbon degradation in these microbiomes.

View Article and Find Full Text PDF

The accelerated decline in Arctic sea-ice cover and duration is enabling the opening of Arctic marine passages and improving access to natural resources. The increasing accessibility to navigation and resource exploration and production brings risks of accidental hydrocarbon releases into Arctic waters, posing a major threat to Arctic marine ecosystems where oil may persist for many years, especially in beach sediment. The composition and response of the microbial community to oil contamination on Arctic beaches remain poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • A study on the impact of crude oil spills in Canadian freshwater environments revealed limited effects on native microbial communities when small amounts of oil were introduced.
  • Over 72 hours, researchers assessed how these communities interacted with the oil and found that polycyclic aromatic hydrocarbon (PAH) levels returned to near pre-spill concentrations within two months.
  • The native microbial community showed no significant changes in composition or degradation methods, indicating their resilience and ability to manage small oil spills effectively without prior exposure to hydrocarbons.
View Article and Find Full Text PDF

With the increase in crude oil transport throughout Canada, the potential for spills into freshwater ecosystems has increased and additional research is needed in these sensitive environments. Large enclosures erected in a lake were used as mesocosms for this controlled experimental dilbit (diluted bitumen) spill under ambient environmental conditions. The microbial response to dilbit, the efficacy of standard remediation protocols on different shoreline types commonly found in Canadian freshwater lakes, including a testing of a shoreline washing agent were all evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • Global warming is causing sea ice loss in the Canadian Northwest Passage, increasing shipping traffic and raising the risk of oil spills.
  • Researchers studied 22 bacterial isolates from beach sediments in the area, finding they have genes that help them break down hydrocarbons and tolerate extreme cold and salinity.
  • Two of these bacterial isolates can effectively degrade Ultra Low Sulfur Fuel Oil under Arctic conditions, suggesting that these microorganisms could serve as a natural solution for cleaning up marine fuel spills.
View Article and Find Full Text PDF

Marine oil spills have devastating environmental impacts and extrapolation of experimental fate and impact data from the lab to the field remains challenging due to the lack of comparable field data. In this work we compared two field systems used to study in situ oil depletion with emphasis on biodegradation and associated microbial communities. The systems were based on (i) oil impregnated clay beads and (ii) hydrophobic Fluortex adsorbents coated with thin oil films.

View Article and Find Full Text PDF

Effects of season and mixing on hydrocarbon concentrations and the microbial community response was explored in a series of mesocosm experiments simulating surface spills of diesel into coastal waters. Mixing of any amount contributed to hydrocarbons entering the water column, but diesel fuel composition had a significant effect on hydrocarbon concentrations. Higher initial concentrations of aromatic hydrocarbons resulted in higher water column concentrations, with minimal differences among seasons due to high variability.

View Article and Find Full Text PDF

The Baffin Island Oil Spill (BIOS) Project is a long-term monitoring field study conducted in the early 1980s, seeking to examine the physical and chemical fate of crude oil released into a pristine Arctic setting. During the present study, sites of the BIOS Project were revisited in 2019 for the collection of oiled intertidal and backshore sediments. These samples were analyzed for several groups of petroleum hydrocarbons including saturates (n-alkanes, branched alkanes, and alkylcycloalkanes), hopane and sterane biomarkers, and alkylbenzenes.

View Article and Find Full Text PDF

Global warming induced sea ice loss increases Arctic maritime traffic, enhancing the risk of ecosystem contamination from fuel spills and nutrient loading. The impact of marine diesel on bacterial metabolic activity and diversity, assessed by colorimetric assay, 16S rRNA and metagenomic sequencing, of Northwest Passage (Arctic Ocean) beach sediments was assessed with nutrient amendment at environmentally relevant temperatures (5 and 15 °C). Higher temperature and nutrients stimulated microbial activity, while diesel reduced it, with metabolism inhibited at and above 0.

View Article and Find Full Text PDF

With an on-going disproportional warming of the Arctic Ocean and the reduction of the sea ice cover, the risk of an accidental oil spill from ships or future oil exploration is increasing. It is hence important to know how crude oil weathers in this environment and what factors affect oil biodegradation in the Arctic. However, this topic is currently poorly studied.

View Article and Find Full Text PDF

Crop breeding has traditionally ignored the plant-associated microbial communities. Considering the interactions between plant genotype and associated microbiota is of value since different genotypes of the same crop often harbor distinct microbial communities which can influence the plant phenotype. However, recent studies have reported contrasting results, which led us to hypothesize that the effect of genotype is constrained by growth stages, sampling year and plant compartment.

View Article and Find Full Text PDF

Lake Erie is subject to recurring events of cyanobacterial harmful algal blooms (cHABs), but measures of nutrients and total phytoplankton biomass seem to be poor predictors of cHABs when taken individually. A more integrated approach at the watershed scale may improve our understanding of the conditions that lead to bloom formation, such as assessing the physico-chemical and biological factors that influence the lake microbial community, as well as identifying the linkages between Lake Erie and the surrounding watershed. Within the scope of the Government of Canada's Genomics Research and Development Initiative (GRDI) Ecobiomics project, we used high-throughput sequencing of the 16S rRNA gene to characterize the spatio-temporal variability of the aquatic microbiome in the Thames River-Lake St.

View Article and Find Full Text PDF

The Arctic is a unique environment characterized by extreme conditions, including daylight patterns, sea ice cover, and some of the lowest temperatures on Earth. Such characteristics in tandem present challenges when extrapolating information from oil spill research within warmer, more temperate regions. Consequently, oil spill studies must be conducted within the Arctic to yield accurate and reliable results.

View Article and Find Full Text PDF
Article Synopsis
  • The effectiveness of oil spill breakdown in Arctic waters is heavily influenced by the presence of oil-degrading bacteria, whose activity is hindered by extreme seasonal conditions like nutrient scarcity and freezing temperatures.
  • Research was conducted in SW-Greenland fjords, comparing the epipelagic (shallower, variable conditions) and mesopelagic (deeper, stable conditions) zones to assess their impact on bacterial growth and oil degradation rates, with findings indicating lower biodegradation in the epipelagic zone due to harsher environmental factors.
  • Genetic analysis revealed that bacterial populations were significantly denser and more diverse in the mesopelagic zone, correlating with a more effective oil degradation process compared to the epipelagic zone, where poor growth conditions limited
View Article and Find Full Text PDF

The biodegradability of residues derived from in-situ burning, an oil spill response strategy which involves burning an oil slick on the sea surface, has not yet been fully studied. With a growing risk of oil spills, the fate of the persistent burn residue containing potentially toxic substances must be better understood. Microcosms were used to study the microbial community response and potential biodegradability of in-situ burn residues generated from Ultra Low Sulphur (ULS) marine diesel.

View Article and Find Full Text PDF

Despite many studies of diluted bitumen (DB) behavior during spills in saltwater, limited information is available on DB behavior in fresh water. This study examined the collective weathering processes on changes of fresh DB spilled in the North Saskatchewan River water and sediment mixture in a mesoscale spill tank under average air/water temperatures of 14 °C/15 °C and 6 °C/2 °C. Temporal changes of the hydrocarbon and microbial community compositions in the water column were assessed during the two 35-day tests under intermittent wave action.

View Article and Find Full Text PDF

In shotgun metagenomics (SM), the state-of-the-art bioinformatic workflows are referred to as high-resolution shotgun metagenomics (HRSM) and require intensive computing and disk storage resources. While the increase in data output of the latest iteration of high-throughput DNA sequencing systems can allow for unprecedented sequencing depth at a minimal cost, adjustments in HRSM workflows will be needed to properly process these ever-increasing sequence datasets. One potential adaptation is to generate so-called shallow SM datasets that contain fewer sequencing data per sample as compared with the more classic high coverage sequencing.

View Article and Find Full Text PDF

In 1999, a tidal wetland located along the St. Lawrence River close to Ste. Croix de Lotbinière (Quebec, Eastern Canada) was the site of an experimental oil spill.

View Article and Find Full Text PDF

Understanding microbial responses to hydrocarbon and plastic pollution are crucial for limiting the detrimental impacts of environmental contaminants on marine ecosystems. Herein, we reported a new Alcanivorax species isolated from the North Atlantic Ocean capable of degrading alkanes and polyhydroxybutyrate (PHB) plastic (one of the emerging bioplastics that may capture the future plastic market). The whole-genome sequencing showed that the species harbors three types of alkane 1-monooxygenases (AlkB) and one PHB depolymerase (PhaZ) to initiate the degradation of alkanes and plastics.

View Article and Find Full Text PDF

Draft whole-genome sequences of a coculture are presented. One component was a polar cyanobacterium, sp. strain Cla-17.

View Article and Find Full Text PDF

Growing concerns over the risk of accidental releases of oil into the marine environment have emphasized our need to improve both oil spill preparedness and response strategies. Among the available spill response options, dispersants offer the advantages of breaking oil slicks into small oil droplets and promoting their dilution, dissolution, and biodegradation within the water column. Thus dispersants can reduce the probability of oil slicks at sea from reaching coastal regions and reduce their direct impact on mammals, sea birds and shoreline ecosystems.

View Article and Find Full Text PDF

Tidal zones providing habitats are particularly vulnerable to microplastic (MP) pollution. In this study, the effects of tidal cycles on the transport of MPs (4-6 μm polyethylene, PE1; 125 μm polyethylene, PE2; and 5-6 μm polytetrafluoroethylene, PFTE) in porous media combined with various environmental and MPs properties were systemically investigated. The results indicated that smaller substrate sizes exhibited higher retention percentages compared to those of larger substrate sizes under different tidal cycles.

View Article and Find Full Text PDF

The biodegradation of dispersed crude oil in the ocean is relatively rapid (a half-life of a few weeks). However, it is often much slower on shorelines, usually attributed to low moisture content, nutrient limitation, and higher oil concentrations in beaches than in dispersed plumes. Another factor may be the increased salinity of the upper intertidal and supratidal zones because these parts of the beach are potentially subject to prolonged evaporation and only intermittent inundation.

View Article and Find Full Text PDF