Publications by authors named "CRONE N"

Background And Objectives: Brain-computer interfaces () hold promise as augmentative and alternative communication technology for people with severe motor and speech impairment (locked-in syndrome) due to neural disease or injury. Although such BCIs should be available 24/7, to enable communication at all times, feasibility of nocturnal BCI use has not been investigated. Here, we addressed this question using data from an individual with amyotrophic lateral sclerosis (ALS) who was implanted with an electrocorticography-based BCI that enabled the generation of click-commands for spelling words and call-caregiver signals.

View Article and Find Full Text PDF

Background: Brain-computer interfaces (BCIs) can restore communication for movement- and/or speech-impaired individuals by enabling neural control of computer typing applications. Single command click detectors provide a basic yet highly functional capability.

Methods: We sought to test the performance and long-term stability of click decoding using a chronically implanted high density electrocorticographic (ECoG) BCI with coverage of the sensorimotor cortex in a human clinical trial participant (ClinicalTrials.

View Article and Find Full Text PDF

Objective: Brain-Computer Interfaces (BCIs) hold significant promise for restoring communication in individuals with partial or complete loss of the ability to speak due to paralysis from amyotrophic lateral sclerosis (ALS), brainstem stroke, and other neurological disorders. Many of the approaches to speech decoding reported in the BCI literature have required time-aligned target representations to allow successful training - a major challenge when translating such approaches to people who have already lost their voice.

Approach: In this pilot study, we made a first step toward scenarios in which no ground truth is available.

View Article and Find Full Text PDF

Recent attempts to mimic enzyme catalysis using simple, short peptides have been successful in enhancing various reactions, but the on-demand, temporal or spatial regulation of such processes by external triggers remains a great challenge. Light irradiation is an ideal trigger for regulating molecular functionality, since it can be precisely manipulated in time and space, and because most reaction mediums do not react to light. We herein report the selection of a photo-switchable amphiphilic peptide catalyst from a small library of isomeric peptides, each containing an azobenzene-based light responsive group and a catalytic histidine residue.

View Article and Find Full Text PDF

Motivation: The clinical success of brain-machine interfaces depends on overcoming both biological and material challenges to ensure a long-term stable connection for neural recording and stimulation. Therefore, there is a need to quantify any damage that microelectrodes sustain when they are chronically implanted in the human cortex.

Methods: Using scanning electron microscopy (SEM), we imaged 980 microelectrodes from Neuroport arrays chronically implanted in the cortex of three people with tetraplegia for 956-2246 days.

View Article and Find Full Text PDF

Historically, eloquent functions have been viewed as localized to focal areas of human cerebral cortex, while more recent studies suggest they are encoded by distributed networks. We examined the network properties of cortical sites defined by stimulation to be critical for speech and language, using electrocorticography from sixteen participants during word-reading. We discovered distinct network signatures for sites where stimulation caused speech arrest and language errors.

View Article and Find Full Text PDF

For patients with drug-resistant epilepsy, successful localization and surgical treatment of the epileptogenic zone (EZ) can bring seizure freedom. However, surgical success rates vary widely because there are currently no clinically validated biomarkers of the EZ. Highly epileptogenic regions often display increased levels of cortical excitability, which can be probed using single-pulse electrical stimulation (SPES), where brief pulses of electrical current are delivered to brain tissue.

View Article and Find Full Text PDF

. Brain-computer interfaces (BCIs) have the potential to preserve or restore speech in patients with neurological disorders that weaken the muscles involved in speech production. However, successful training of low-latency speech synthesis and recognition models requires alignment of neural activity with intended phonetic or acoustic output with high temporal precision.

View Article and Find Full Text PDF

The durability of communication with the use of brain-computer interfaces in persons with progressive neurodegenerative disease has not been extensively examined. We report on 7 years of independent at-home use of an implanted brain-computer interface for communication by a person with advanced amyotrophic lateral sclerosis (ALS), the inception of which was reported in 2016. The frequency of at-home use increased over time to compensate for gradual loss of control of an eye-gaze-tracking device, followed by a progressive decrease in use starting 6 years after implantation.

View Article and Find Full Text PDF

Objective: While evoked potentials elicited by single pulse electrical stimulation (SPES) may assist seizure onset zone (SOZ) localization during intracranial EEG (iEEG) monitoring, induced high frequency activity has also shown promising utility. We aimed to predict SOZ sites using induced cortico-cortical spectral responses (CCSRs) as an index of excitability within epileptogenic networks.

Methods: SPES was conducted in 27 epilepsy patients undergoing iEEG monitoring and CCSRs were quantified by significant early (10-200 ms) increases in power from 10 to 250 Hz.

View Article and Find Full Text PDF

Objective: Evaluate the performance of a custom application developed for tonic-clonic seizure (TCS) monitoring on a consumer-wearable (Apple Watch) device.

Methods: Participants with a history of convulsive epileptic seizures were recruited for either Epilepsy Monitoring Unit (EMU) or ambulatory (AMB) monitoring; participants without epilepsy (normal controls [NC]) were also enrolled in the AMB group. Both EMU and AMB participants wore an Apple Watch with a research app that continuously recorded accelerometer and photoplethysmography (PPG) signals, and ran a fixed-and-frozen tonic-clonic seizure detection algorithm during the testing period.

View Article and Find Full Text PDF

Speech brain-computer interfaces (BCIs) have the potential to augment communication in individuals with impaired speech due to muscle weakness, for example in amyotrophic lateral sclerosis (ALS) and other neurological disorders. However, to achieve long-term, reliable use of a speech BCI, it is essential for speech-related neural signal changes to be stable over long periods of time. Here we study, for the first time, the stability of speech-related electrocorticographic (ECoG) signals recorded from a chronically implanted ECoG BCI over a 12 month period.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) that reconstruct and synthesize speech using brain activity recorded with intracranial electrodes may pave the way toward novel communication interfaces for people who have lost their ability to speak, or who are at high risk of losing this ability, due to neurological disorders. Here, we report online synthesis of intelligible words using a chronically implanted brain-computer interface (BCI) in a man with impaired articulation due to ALS, participating in a clinical trial (ClinicalTrials.gov, NCT03567213) exploring different strategies for BCI communication.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) can be used to control assistive devices by patients with neurological disorders like amyotrophic lateral sclerosis (ALS) that limit speech and movement. For assistive control, it is desirable for BCI systems to be accurate and reliable, preferably with minimal setup time. In this study, a participant with severe dysarthria due to ALS operates computer applications with six intuitive speech commands via a chronic electrocorticographic (ECoG) implant over the ventral sensorimotor cortex.

View Article and Find Full Text PDF

Background: Brain-computer interfaces (BCIs) can restore communication in movement- and/or speech-impaired individuals by enabling neural control of computer typing applications. Single command "click" decoders provide a basic yet highly functional capability.

Methods: We sought to test the performance and long-term stability of click-decoding using a chronically implanted high density electrocorticographic (ECoG) BCI with coverage of the sensorimotor cortex in a human clinical trial participant (ClinicalTrials.

View Article and Find Full Text PDF

Recent studies have shown that speech can be reconstructed and synthesized using only brain activity recorded with intracranial electrodes, but until now this has only been done using retrospective analyses of recordings from able-bodied patients temporarily implanted with electrodes for epilepsy surgery. Here, we report online synthesis of intelligible words using a chronically implanted brain-computer interface (BCI) in a clinical trial participant (ClinicalTrials.gov, NCT03567213) with dysarthria due to amyotrophic lateral sclerosis (ALS).

View Article and Find Full Text PDF

Speech requires successful information transfer within cortical-basal ganglia loop circuits to produce the desired acoustic output. For this reason, up to 90% of Parkinson's disease patients experience impairments of speech articulation. Deep brain stimulation (DBS) is highly effective in controlling the symptoms of Parkinson's disease, sometimes alongside speech improvement, but subthalamic nucleus (STN) DBS can also lead to decreases in semantic and phonological fluency.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on enhancing drug delivery in nanomedicine by using a synthetic lipidated peptide pair, E4/K4, that promotes membrane fusion to improve therapeutic efficacy.
  • - To achieve better fusion, dimeric variants of peptide K4 are created, and their interactions with E4-modified liposomes and cells are analyzed for their structural and functional properties.
  • - The research shows that the specific coiled-coil interactions of the parallel PK4 dimer significantly improve drug delivery efficiency, as demonstrated with doxorubicin, highlighting a promising method for targeted drug therapies.
View Article and Find Full Text PDF

Background: While single pulse electrical stimulation (SPES) is increasingly used to study effective connectivity, the effects of varying stimulation parameters on the resulting cortico-cortical evoked potentials (CCEPs) have not been systematically explored.

Objective: We sought to understand the interacting effects of stimulation pulse width, current intensity, and charge on CCEPs through an extensive testing of this parameter space and analysis of several response metrics.

Methods: We conducted SPES in 11 patients undergoing intracranial EEG monitoring using five combinations of current intensity (1.

View Article and Find Full Text PDF

Membrane fusion is an essential part of the proper functioning of life. As such it is not only important that organisms carefully regulate the process, but also that it is well understood. One way to facilitate and study membrane fusion is to use artificial, minimalist, fusion peptides.

View Article and Find Full Text PDF

Neurosurgical procedures that enable direct brain recordings in awake patients offer unique opportunities to explore the neurophysiology of human speech. The scarcity of these opportunities and the altruism of participating patients compel us to apply the highest rigor to signal analysis. Intracranial electroencephalography (iEEG) signals recorded during overt speech can contain a speech artifact that tracks the fundamental frequency (F0) of the participant's voice, involving the same high-gamma frequencies that are modulated during speech production and perception.

View Article and Find Full Text PDF

Coiled-coil peptides are high-affinity, selective, self-assembling binding motifs, making them attractive components for the preparation of functional biomaterials. Photocontrol of coiled-coil self-assembly allows for the precise localization of their activity. To rationally explore photoactivity in a model coiled coil, three azobenzene-containing amino acids were prepared and substituted into the hydrophobic core of the E/K coiled-coil heterodimer.

View Article and Find Full Text PDF

Cognitive control involves flexibly combining multiple sensory inputs with task-dependent goals during decision making. Several tasks involving conflicting sensory inputs and motor outputs have been proposed to examine cognitive control, including the Stroop, Flanker, and multi-source interference task. Because these tasks have been studied independently, it remains unclear whether the neural signatures of cognitive control reflect abstract control mechanisms or specific combinations of sensory and behavioral aspects of each task.

View Article and Find Full Text PDF

Over 15 million epilepsy patients worldwide have drug-resistant epilepsy. Successful surgery is a standard of care treatment but can only be achieved through complete resection or disconnection of the epileptogenic zone, the brain region(s) where seizures originate. Surgical success rates vary between 20% and 80%, because no clinically validated biological markers of the epileptogenic zone exist.

View Article and Find Full Text PDF