Publications by authors named "CJ Arntzen"

Noroviruses (NoVs) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. A previous study, which used a 3-dimensional (3-D) intestinal model derived from INT-407 cells reported NoV replication and extensive cytopathic effects (CPE).

View Article and Find Full Text PDF

Ebola hemorrhagic fever is an acute and often deadly disease caused by Ebola virus (EBOV). The possible intentional use of this virus against human populations has led to design of vaccines that could be incorporated into a national stockpile for biological threat reduction. We have evaluated the immunogenicity and efficacy of an EBOV vaccine candidate in which the viral surface glycoprotein is biomanufactured as a fusion to a monoclonal antibody that recognizes an epitope in glycoprotein, resulting in the production of Ebola immune complexes (EICs).

View Article and Find Full Text PDF

The development of a vaccine to prevent norovirus infections has been focused on immunization at a mucosal surface, but has been limited by the low immunogenicity of self-assembling Norwalk virus-like particles (NV VLPs) delivered enterically or at nasal surfaces. Nasal immunization, which offers the advantage of ease of immunization, faces obstacles imposed by the normal process of mucociliary clearance, which limits residence time of applied antigens. Herein, we describe the use of a dry powder formulation (GelVac) of an inert in situ gelling polysaccharide (GelSite) extracted from Aloe vera for nasal delivery of NV VLP antigen.

View Article and Find Full Text PDF

Filoviruses (Ebola and Marburg viruses) cause severe and often fatal haemorrhagic fever in humans and non-human primates. The US Centers for Disease Control identifies Ebola and Marburg viruses as 'category A' pathogens (defined as posing a risk to national security as bioterrorism agents), which has lead to a search for vaccines that could prevent the disease. Because the use of such vaccines would be in the service of public health, the cost of production is an important component of their development.

View Article and Find Full Text PDF

Norwalk virus (NV) is an enteric pathogen from the genus Norovirus and a major cause of nonbacterial gastroenteritis in humans. NV virus-like particles (VLPs) are known to elicit systemic and mucosal immune responses when delivered nasally; however, the correlates of immune protection are unknown, and codelivery with a safe and immunogenic mucosal adjuvant may enhance protective anti-NV immune responses. Resiquimod (R848), an imidazoquinoline-based Toll-like receptor 7 and/or 8 (TLR7/8) agonist, is being evaluated as an adjuvant in FDA-approved clinical vaccine trials.

View Article and Find Full Text PDF

The development of a topical microbicide blocking the sexual transmission of HIV-1 is urgently needed to control the global HIV/AIDS pandemic. The actinomycete-derived lectin actinohivin (AH) is highly specific to a cluster of high-mannose-type glycans uniquely found on the viral envelope (Env). Here, we evaluated AH's candidacy toward a microbicide in terms of in vitro anti-HIV-1 activity, potential side effects, and recombinant producibility.

View Article and Find Full Text PDF

Plant viral vectors have great potential in rapid production of important pharmaceutical proteins. However, high-yield production of hetero-oligomeric proteins that require the expression and assembly of two or more protein subunits often suffers problems due to the "competing" nature of viral vectors derived from the same virus. Previously we reported that a bean yellow dwarf virus (BeYDV)-derived, three-component DNA replicon system allows rapid production of single recombinant proteins in plants (Huang et al.

View Article and Find Full Text PDF

We have developed an in vitro human vaginal epithelial cell (EC) model using the innovative rotating wall vessel (RWV) bioreactor technology that recapitulates in vivo structural and functional properties, including a stratified squamous epithelium with microvilli, tight junctions, microfolds, and mucus. This three-dimensional (3-D) vaginal model provides a platform for high-throughput toxicity testing of candidate microbicides targeted to combat sexually transmitted infections, effectively complementing and extending existing testing systems such as surgical explants or animal models. Vaginal ECs were grown on porous, collagen-coated microcarrier beads in a rotating, low fluid-shear environment; use of RWV bioreactor technology generated 3-D vaginal EC aggregates.

View Article and Find Full Text PDF

Plague is still endemic in different regions of the world. Current vaccines raise concern for their side effects and limited protection, highlighting the need for an efficacious and rapidly producible vaccine. F1 and V antigens of Yersinia pestis, and F1-V fusion protein produced in Nicotiana benthamiana administered to guinea pigs resulted in immunity and protection against an aerosol challenge of virulent Y.

View Article and Find Full Text PDF

Virus-like particles (VLPs) derived from enteric pathogens like Norwalk virus (NV) are well suited to study oral immunization. We previously described stable transgenic plants that accumulate recombinant NV-like particles (rNVs) that were orally immunogenic in mice and humans. The transgenic approach suffers from long generation time and modest level of antigen accumulation.

View Article and Find Full Text PDF

Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia. Among the virulence factors, ApxIIA, a bacterial exotoxin, is reportedly expressed in many serotypes and is considered as a candidate for the development of a vaccine against the bacterial infection. Previously, we isolated a field strain of A.

View Article and Find Full Text PDF

Escherichia coli heat-labile enterotoxin B subunit (LTB) strongly induces immune responses and can be used as an adjuvant for co-administered antigens. Synthetic LTB (sLTB) based on optimal codon usage by plants was introduced into lettuce cells (Lactuca sativa) by Agrobacterium tumefaciens-mediated transformation methods. The sLTB gene was detected in the genomic DNA of transgenic lettuce leaf cells by PCR DNA amplification.

View Article and Find Full Text PDF

A number of different antigens have been successfully expressed in transgenic plants, and some are currently being evaluated as orally delivered vaccines. Here we report the successful expression of rotavirus capsid proteins VP2 and VP6 in fruits of transgenic tomato plants. By western blot analysis, using specific antibodies, we determined that the VP2 and VP6 produced in plants have molecular weights similar to those found in native rotavirus.

View Article and Find Full Text PDF

Hepatitis B core antigen (HBc or HBcAg) self-assembles into capsid particles and is extremely immunogenic. HBc has been extensively studied for its production in various expression systems and for the use of HBc particles for high-density, immunogenic presentation of foreign epitopes. Here we reported the high-level transient expression of HBc in plant leaf and its immunogenicity in mice.

View Article and Find Full Text PDF

Plague is still an endemic disease in different regions of the world. Increasing reports of incidence, the discovery of antibiotic resistance strains, and concern about a potential use of the causative bacteria Yersinia pestis as an agent of biological warfare have highlighted the need for a safe, efficacious, and rapidly producible vaccine. The use of F1 and V antigens and the derived protein fusion F1-V has shown great potential as a protective vaccine in animal studies.

View Article and Find Full Text PDF

Recombinant hepatitis E virus capsid protein (HEV CP) assembles orally immunogenic virus-like particles (VLP) when expressed in an insect cell system. We used plant expression cassettes, pHEV101 and pHEV110, for transformation of potato to express HEV CP, and 10 independent transgenic lines of HEV101 and 6 lines of HEV110 were obtained. ELISA for HEV CP was performed on tuber extracts.

View Article and Find Full Text PDF

Expression of vaccine antigens in plants and delivery via ingestion of transgenic plant material has shown promise in numerous pre-clinical animal studies and in a few clinical trials. A number of different viral antigens have been tested, and among the most promising are those that can assemble virus-like particles (VLP), which mimic the form of authentic virions and display neutralizing antibody epitopes. We have extensively studied plant expression, VLP assembly, and immunogenicity of hepatitis B surface antigen (HBsAg) and Norwalk virus capsid protein (NVCP).

View Article and Find Full Text PDF

A double-blind placebo-controlled clinical trial evaluated the immunogenicity of hepatitis B surface antigen (HBsAg) expressed in potatoes and delivered orally to previously vaccinated individuals. The potatoes accumulated HBsAg at approximately 8.5 microg/g of potato tuber, and doses of 100 g of tuber were administered by ingestion.

View Article and Find Full Text PDF

A vaccine that would engage the mucosal immune system against a broad range of HIV-1 subtypes and prevent epithelial transmission is highly desirable. Here we report fusing the mucosal targeting B subunit of cholera toxin to the conserved galactosylceramide-binding domain (including the ELDKWA-neutralizing epitope) of the HIV-1 gp41 envelope protein, which mediates the transcytosis of HIV-1 across the mucosal epithelia. Chimeric protein expressed in bacteria or plants assembled into oligomers that were capable of binding galactosyl-ceramide and G(M1) gangliosides.

View Article and Find Full Text PDF

Research into plant-based expression of pharmaceutical proteins is proceeding at a blistering pace. Indeed, plants expressing pharmaceutical proteins are currently being grown in field environments throughout the USA. But how are these plants and proteins being assessed for environmental risk and how are they being regulated? Here, we examine the applicability of the risk assessment paradigm for assessing human and ecological risks from field-grown transgenic plants that express pharmaceutical proteins.

View Article and Find Full Text PDF

Transgenic plants are potentially safe and inexpensive vehicles to produce and mucosally deliver protective antigens. However, the application of this technology is limited by the poor response of the immune system to non-particulate, subunit vaccines. Co-delivery of therapeutic proteins with carrier proteins could increase the effectiveness of the antigen.

View Article and Find Full Text PDF

As the public debate in Europe about genetically modified (GM) crops heats up and the trade row between the United States and the European Union over GM food escalates, what better time to examine the issues with an international group of experts (Box 1). Their views are diverse, but they all agree that we need more impartial communication, less propaganda and an effective regulatory regime that is based on a careful case-by-case consideration of GM technology. It seems that GM crops are here to stay, so let us hope that these requirements are met and that the developing nations that perhaps have the most to gain from this technology can start to reap its benefits.

View Article and Find Full Text PDF

Several subunit vaccine antigens have been successfully expressed in plants and recently the hepatitis B surface antigen (HBsAg), expressed in potatoes, was shown to be orally immunogenic in animal studies. However, to date, a detailed analysis of the plant-derived antigen is lacking. Herein, we comprehensively characterize the structure and post-translational processing of HBsAg from potato tuber and two plant cell suspension cultures.

View Article and Find Full Text PDF

Epitopes often require co-delivery with an adjuvant or targeting protein to enable recognition by the immune system. This paper reports the ability of transgenic tomato plants to express a fusion protein consisting of the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) and an immunocontraceptive epitope. The fusion protein was found to assemble into pentamers, as evidenced by its ability to bind to gangliosides, and had an average expression level of 37.

View Article and Find Full Text PDF