Publications by authors named "CH Peden"

Commercial Cu/SAPO-34 selective catalytic reduction (SCR) catalysts have experienced unexpected and quite perplexing failure. Understanding the causes at an atomic level is vital for the synthesis of more robust Cu/SAPO-34 catalysts. Here we show, via application of model catalysts with homogeneously dispersed isolated Cu ions, that Cu transformations resulting from low-temperature hydrothermal aging and ambient temperature storage can be semi-quantitatively probed with 2-dimensional pulsed electron paramagnetic resonance.

View Article and Find Full Text PDF

Active centers in Cu/SSZ-13 selective catalytic reduction (SCR) catalysts have been recently identified as isolated Cu and [Cu(OH)] ions. A redox reaction mechanism has also been established, where Cu ions cycle between Cu and Cu oxidation states during SCR reaction. While the mechanism for the reduction half-cycle (Cu → Cu) is reasonably well-understood, that for the oxidation half-cycle (Cu → Cu) remains an unsettled debate.

View Article and Find Full Text PDF

The IR spectra of adsorbed CO and NO probe molecules were used to characterize the coordination chemistry of Fe(2+) ions in solution ion exchanged Fe,H/SSZ-13 zeolites. The effects of Fe ion exchange levels, as well as the sample pre-treatment conditions, on the adsorption of these probe molecules were investigated. The ion exchange levels (in the range of the study) did not affect significantly the IR spectra of either probe molecule, and the IR features and their intensity ratios were very similar.

View Article and Find Full Text PDF

Here we present the design of reusable and perfectly sealed all-zirconia MAS rotors. The rotors are used to study AlPO4-5 molecular sieve crystallization under hydrothermal conditions, high temperature high pressure cyclohexanol dehydration reaction, and low temperature metabolomics of intact biological tissue.

View Article and Find Full Text PDF

The ever increasing demand to develop highly fuel efficient engines coincides with the need to minimize air pollution originating from the exhaust gases of internal combustion engines. Dramatically improved fuel efficiency can be achieved at air-to-fuel ratios much higher than stoichiometric. In the presence of oxygen in large excess, however, traditional three-way catalysts are unable to reduce NOx.

View Article and Find Full Text PDF

Catalysis by single isolated atoms of precious metals has attracted much recent interest, as it promises the ultimate in atom efficiency. Most previous reports are on reducible oxide supports. Here we show that isolated palladium atoms can be catalytically active on industrially relevant γ-alumina supports.

View Article and Find Full Text PDF

The development of thermally stable, nanometer-sized precious metal-based catalysts remains a daunting challenge. Such materials, especially those based on the use of costly platinum metal, are essential and, to date, non-replaceable for a large number of industrially important catalytic processes. Here we report a well-defined cuboctahedral MgAl2O4 spinel support material that is capable of stabilizing platinum particles in the range of 1-3 nm on its relatively abundant {111} facets during extremely severe aging at 800 °C in air for 1 week.

View Article and Find Full Text PDF

Side on! Combined FTIR and NMR studies revealed the presence of a side-on nitrosyl species in the zeolite Cu-SSZ-13. This intermediate is very similar to those found in nitrite reductase enzyme systems. The identification of this intermediate led to the proposal of a reaction mechanism that is fully consistent with the results of both kinetic and spectroscopic studies.

View Article and Find Full Text PDF

The adsorption of CO and NO over Cu-SSZ-13 zeolite catalysts, highly active in the selective catalytic reduction of NO(x) with NH(3), was investigated by FTIR spectroscopy, and the results obtained were compared to those collected from other Cu-ion exchanged zeolites (Y,FAU and ZSM-5). Under low CO pressures and at room temperature (295 K), CO forms monocarbonyls exclusively on the Cu(+) ions, while in the presence of gas phase CO dicarbonyls on Cu(+) and adsorbed CO on Cu(2+) centers form, as well. At low (cryogenic) sample temperatures, tricarbonyl formation on Cu(+) sites was also observed.

View Article and Find Full Text PDF
Article Synopsis
  • H(2)-TPR and FTIR techniques were employed to analyze the Cu ions in the Cu-SSZ-13 zeolite at various levels of ion exchange.
  • The findings indicate that the Cu ions exist in two different cationic positions within the SSZ-13 structure.
  • This characterization helps in understanding the role of the Cu ions in the zeolite's properties and potential applications.
View Article and Find Full Text PDF

Cu-BTC (also known as HKUST-1) is a well-characterized metal-organic framework material produced in an industrial scale and widely studied for a number of potential applications by the scientific community. The co-existence of Cu(+) and Cu(2+) entities has already been observed in this material, but the presence of Cu(+) ions was attributed to oxide impurities. The results presented here clearly demonstrate that Cu(+) ions can be present in high concentrations inside the hybrid structure.

View Article and Find Full Text PDF

A large-sample-volume constant-flow magic angle sample spinning (CF-MAS) NMR probe is reported for in situ studies of the reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions. In our approach, the reactants are introduced into the catalyst bed using a fixed tube at one end of the MAS rotor while a second fixed tube, linked to a vacuum pump, is attached at the other end of the rotor. The pressure difference between both ends of the catalyst bed inside the sample cell space forces the reactants flowing through the catalyst bed, which improves the diffusion of the reactants and products.

View Article and Find Full Text PDF

We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed.

View Article and Find Full Text PDF

Micro and mesoporous metal-organic frameworks were synthesized using a single tetrahedral building block and their catalytic properties towards alkylation of toluene and biphenyl showed high selectivity for the para oriented product using these porous materials.

View Article and Find Full Text PDF

In many heterogeneous catalysts, the interaction of metal particles with their oxide support can alter the electronic properties of the metal and can play a critical role in determining particle morphology and maintaining dispersion. We used a combination of ultrahigh magnetic field, solid-state magic-angle spinning nuclear magnetic resonance spectroscopy, and high-angle annular dark-field scanning transmission electron microscopy coupled with density functional theory calculations to reveal the nature of anchoring sites of a catalytically active phase of platinum on the surface of a gamma-Al2O3 catalyst support material. The results obtained show that coordinatively unsaturated pentacoordinate Al3+ (Al3+penta) centers present on the (100) facets of the gamma-Al2O3 surface are anchoring Pt.

View Article and Find Full Text PDF

Dispersion and quantitative characterization of supported catalysts is a grand challenge in catalytic science. In this paper, heteropoly acid H(3)PW(12)O(40) (HPA) is dispersed on mesoporous zeolite silicalite-1 derived from hydrothermal synthesis using carbon black nanoparticle templates, and the catalytic activity is studied for 1-butene isomerization. The HPAs supported on conventional zeolite and on mesoporous zeolite exhibit very different activities and thus provide good model systems to investigate the structure dependence of the catalytic properties.

View Article and Find Full Text PDF

"Surface" and "bulk" nitrates formed on a series of alkaline earth oxides (AEOs), AE(NO3)2, were investigated using first-principles density functional theory calculations. The formation of these surface and bulk nitrates was modeled by the adsorption of NO2+NO3 pairs on gamma-Al2O3-supported monomeric AEOs (MgO, CaO, SrO, and BaO) and on the extended AEO(001) surfaces, respectively. The calculated vibrational frequencies of the surface and bulk nitrates based on our proposed models are in good agreement with experimental measurements of AEO/gamma-Al2O3 materials after prolonged NO2 exposure.

View Article and Find Full Text PDF

An isotropic-anisotropic shift 2D correlation spectroscopy is introduced that combines the advantages of both magic angle turning (MAT) and magic angle hopping (MAH) technologies. In this new approach, denoted DMAT for "discrete magic angle turning", the sample rotates clockwise followed by an anticlockwise rotation of exactly the same amount with each rotation less or equal than 360 degrees but greater than 240 degrees , with the rotation speed being constant only for times related to the evolution dimension. This back and forth rotation is repeated and synchronized with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum.

View Article and Find Full Text PDF

The use of an ultrahigh magnetic field spectrometer and 95Mo isotope enrichment facilitate the direct observation of the local structure of Mo species on Mo/zeolite catalysts by 95Mo NMR. Top trace: The experimental 95Mo NMR spectrum of 6Mo/HZSM-5. Bottom traces: The simulated overall spectrum (orange), the spectral component corresponding to MoO3 (purple), and the component corresponding to the exchanged Mo species (green).

View Article and Find Full Text PDF

Exposure of NO(2)-saturated BaO/gamma-Al(2)O(3) NO(x) storage materials to H(2)O vapour results in the conversion of surface nitrates to Ba(NO(3))(2) crystallites, causing dramatic morphological changes in the Ba-containing phase, demonstrating a role for water in affecting the NO(x) storage/reduction properties of these materials.

View Article and Find Full Text PDF

Ba deposition on a theta-Al(2)O(3)/NiAl(100) substrate and its oxidation with gas-phase O(2) at various surface temperatures are investigated using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and temperature programmed desorption (TPD) techniques. Oxidation of metallic Ba by gas-phase O(2) at 800 K results in the growth of 2D and 3D BaO surface domains. Saturation of a metallic Ba layer deposited on theta-Al(2)O(3)/NiAl(100) with O(2)(g) at 300 K reveals the formation of BaO(2)-like surface states.

View Article and Find Full Text PDF

Room-temperature Ba deposition on an oxygen-terminated theta-Al(2)O(3)/NiAl(100) ultrathin film substrate under ultrahigh vacuum (UHV) conditions is studied using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) techniques. In addition, Ba oxidation by the ions of the alumina substrate at 300 K < T < 1200 K in the absence of a gas-phase oxidizing agent is investigated. Our results indicate that at room temperature Ba grows in a layer-by-layer fashion for the first two layers, and Ba is partially oxidized.

View Article and Find Full Text PDF

Interaction of NO2 with an ordered theta-Al2O3/NiAl(100) model catalyst surface was investigated using temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). The origin of the NO(x) uptake of the catalytic support (i.e.

View Article and Find Full Text PDF

The changes in the morphology of Ba-oxide-based NO(x)() storage/reduction catalysts were investigated using time-resolved X-ray diffraction, transmission electron microscopy, and energy dispersed spectroscopy. Large Ba(NO(3))(2) crystallites form on the alumina support when the catalyst is prepared by the incipient wetness method using an aqueous Ba(NO(3))(2) solution. Heating the sample to 873 K in a He flow results in the decomposition of the Ba(NO(3))(2) phase and the formation of both a monolayer BaO film strongly interacting with the alumina support and nanocrystalline BaO particles.

View Article and Find Full Text PDF