Publications by authors named "CF Powell"

Underwater noise pollution from shipping is globally pervasive and has a range of adverse impacts on species which depend on sound, including marine mammals, sea turtles, fish, and many invertebrates. International bodies including United Nations agencies, the Arctic Council, and the European Union are beginning to address the issue at the policy level, but better evidence is needed to map levels of underwater noise pollution and the potential benefits of management measures such as ship-quieting regulations. Crucially, corroboration of noise maps with field measurements is presently lacking, which undermines confidence in their application to policymaking.

View Article and Find Full Text PDF

The multiphase flow inside a diesel injection nozzle is imaged using synchrotron X-rays from the Advanced Photon Source at Argonne National Laboratory. Through acquisitions performed at several viewing angles and subsequent tomographic reconstruction, in-situ 3D visualization is achieved for the first time inside a steel injector at engine-like operating conditions. The morphology of the internal flow reveals strong flow separation and vapor-filled cavities (cavitation), the degree of which correlates with the nozzle's asymmetric inlet corner profile.

View Article and Find Full Text PDF

This study used microelectrodes to record pH profiles in fresh shelf sea sediment cores collected across a range of different sediment types within the Celtic Sea. Spatial and temporal variability was captured during repeated measurements in 2014 and 2015. Concurrently recorded oxygen microelectrode profiles and other sedimentary parameters provide a detailed context for interpretation of the pH data.

View Article and Find Full Text PDF

Cavitation is an intricate multiphase phenomenon that interplays with turbulence in fluid flows. It exhibits clear duality in characteristics, being both destructive and beneficial in our daily lives and industrial processes. Despite the multitude of occurrences of this phenomenon, highly dynamic and multiphase cavitating flows have not been fundamentally well understood in guiding the effort to harness the transient and localized power generated by this process.

View Article and Find Full Text PDF

In recent years, X-ray radiography has been used to probe the internal structure of dense sprays with microsecond time resolution and a spatial resolution of 15 µm even in high-pressure environments. Recently, the 7BM beamline at the Advanced Photon Source (APS) has been commissioned to focus on the needs of X-ray spray radiography measurements. The spatial resolution and X-ray intensity at this beamline represent a significant improvement over previous time-resolved X-ray radiography measurements at the APS.

View Article and Find Full Text PDF

Combined measurements of X-ray absorption and fluorescence have been performed in jets of pure and diluted argon gas to demonstrate the feasibility of using X-ray fluorescence to study turbulent mixing. Measurements show a strong correspondence between the absorption and fluorescence measurements for high argon concentration. For lower argon concentration, fluorescence provides a much more robust measurement than absorption.

View Article and Find Full Text PDF

A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 micros. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date.

View Article and Find Full Text PDF

Synchrotron x-radiography and a fast x-ray detector were used to record the time evolution of the transient fuel sprays from a high-pressure injector. A succession of 5.1-microsecond radiographs captured the propagation of the spray-induced shock waves in a gaseous medium and revealed the complex nature of the spray hydrodynamics.

View Article and Find Full Text PDF