Publications by authors named "CE Nebel"

Scanning probe microscopy techniques providing information on conductivity, chemical fluxes, and interfacial reactivity synchronized with topographical information have gained importance within the last decades. Herein, a novel colloidal atomic force microscopy (AFM) probe is presented using a spherical boron-doped diamond (BDD) electrode attached and electrically connected to a modified silicon nitride cantilever. These conductive spherical BDD-AFM probes allow for electrochemical force spectroscopy.

View Article and Find Full Text PDF

Diamond is a highly attractive coating material as it is characterized by a wide optical transparency window, a high thermal conductivity, and an extraordinary robustness due to its mechanical properties and its chemical inertness. In particular, the latter has aroused a great deal of interest for scanning probe microscopy applications in recent years. In this study, we present a novel method for the fabrication of atomic force microscopy (AFM) probes for force spectroscopy using robust diamond-coated spheres, i.

View Article and Find Full Text PDF

Solid-state quantum emitters embedded in a semiconductor crystal environment are potentially scalable platforms for quantum optical networks operated at room temperature. Prominent representatives are nitrogen-vacancy (NV) centers in diamond showing coherent entanglement and interference with each other. However, these emitters suffer from inefficient optical outcoupling from the diamond and from fluctuations of their charge state.

View Article and Find Full Text PDF

In this paper, we demonstrate an active and fast control of the charge state and hence of the optical and electronic properties of single and near-surface nitrogen-vacancy centres (NV centres) in diamond. This active manipulation is achieved by using a two-dimensional Schottky-diode structure from diamond, i.e.

View Article and Find Full Text PDF

Electrochemically switchable selective membranes play an important role in selective filtration processes such as water desalination, industrial waste treatment, and hemodialysis. Currently, membranes for these purposes need to be optimized in terms of electrical conductivity and stability against fouling and corrosion. In this paper, we report the fabrication of boron-doped diamond membrane by template diamond growth on quartz fiber filters.

View Article and Find Full Text PDF

A versatile and robust hierarchically multifunctionalized nanostructured material made of poly(3,4-(ethylenedioxy)thiophene) (PEDOT)-coated diamond@silicon nanowires has been demonstrated to be an excellent capacitive electrode for supercapacitor devices. Thus, the electrochemical deposition of nanometric PEDOT films on diamond-coated silicon nanowire (SiNW) electrodes using N-methyl-N-propylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide ionic liquid displayed a specific capacitance value of 140 F g(-1) at a scan rate of 1 mV s(-1). The as-grown functionalized electrodes were evaluated in a symmetric planar microsupercapacitor using butyltrimethylammonium bis((trifluoromethyl)sulfonyl)imide aprotic ionic liquid as the electrolyte.

View Article and Find Full Text PDF

Electrostatic self-assembly of diamond nanoparticles (DNPs) onto substrate surfaces (so-called nanodiamond seeding) is a notable technique, enabling chemical vapor deposition (CVD) of nanocrystalline diamond thin films on non-diamond substrates. In this study, we examine this technique onto differently polarized (either Al- or N-polar) -axis oriented sputtered aluminum nitride (AlN) film surfaces. This investigation shows that Al-polar films, as compared to N-polar ones, obtain DNPs with higher density and more homogeneously on their surfaces.

View Article and Find Full Text PDF

In this Spotlight on Applications, we describe our recent progress on the fabrication of surface-enlarged boron-doped polycrystalline diamond electrodes, and evaluate their performance in supercapacitor applications. We begin with a discussion of the fabrication methods of porous diamond materials. The diamond surface enlargement starts with a top-down plasma etching method.

View Article and Find Full Text PDF

In this paper, we demonstrate an active control of the charge state of a single nitrogen-vacancy (NV) centre by using in-plane Schottky-diode geometries with aluminium on hydrogen-terminated diamond surface. A switching between NV(+), NV(0) and NV(-) can be performed with the Al-gates which apply electric fields in the hole depletion region of the Schottky junction that induces a band bending modulation, thereby shifting the Fermi-level over NV charge transition levels. We simulated the in-plane band structure of the Schottky junction with the Software ATLAS by solving the drift-diffusion model and the Poisson-equation self-consistently.

View Article and Find Full Text PDF

Monosized (∼4 nm) diamond nanoparticles arranged on substrate surfaces are exciting candidates for single-photon sources and nucleation sites for ultrathin nanocrystalline diamond film growth. The most commonly used technique to obtain substrate-supported diamond nanoparticles is electrostatic self-assembly seeding using nanodiamond colloidal suspensions. Currently, monodisperse nanodiamond colloids, which have a narrow distribution of particle sizes centering on the core particle size (∼4 nm), are available for the seeding technique on different substrate materials such as Si, SiO2, Cu, and AlN.

View Article and Find Full Text PDF

The negatively charged nitrogen-vacancy (NV) centre exhibits outstanding optical and spin properties and thus is very attractive for applications in quantum optics. Up to now an active control of the charge state of near-surface NV centres is difficult and the centres switch in an uncontrolled way between different charge states. In this work, we demonstrate an active control of the charge state of NV centres (implanted 7 nm below the surface) by using an in-plane Schottky diode geometry from aluminium on hydrogen terminated diamond in combination with confocal micro-photoluminescence measurements.

View Article and Find Full Text PDF

Nanocrystalline diamond nanoelectrode arrays (NEAs) have been applied to investigate surface-sensitive adsorption phenomena at the diamond-liquid interface. The adsorption of neutral methyl viologen (MV(0) ) was used as a model system. The adsorption of MV(0) was examined on hydrogen- and oxygen-terminated surfaces.

View Article and Find Full Text PDF

Electrochemical CO2 reduction has been investigated on a planar diamond electrode in aqueous and nonaqueous solutions. On a diamond electrode decorated with copper nanoparticles, CO2 reduction starts from -0.1 V versus a normal hydrogen electrode (NHE) when a mixture of water and ionic liquid ([H2O] = 10 μM) is used.

View Article and Find Full Text PDF

We demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen-vacancy centers to plasmonic resonators, such as metallic nanoantennas.

View Article and Find Full Text PDF

Unimorph heterostructures based on piezoelectric aluminum nitride (AlN) and diamond thin films are highly desirable for applications in micro- and nanoelectromechanical systems. In this paper, we present a new approach to combine thin conductive boron-doped as well as insulating nanocrystalline diamond (NCD) with sputtered AlN films without the need for any buffer layers between AlN and NCD or polishing steps. The zeta potentials of differently treated nanodiamond (ND) particles in aqueous colloids are adjusted to the zeta potential of AlN in water.

View Article and Find Full Text PDF

Silicon carbide (SiC) films have been used frequently for high-frequency and powder devices but have seldom been applied as the electrode material. In this paper, we have investigated the electrochemical properties of the nanocrystalline 3C-SiC film in detail. A film with grain sizes of 5 to 20 nm shows a surface roughness of about 30 nm.

View Article and Find Full Text PDF

The crystalline form of sp(3)-hybridized carbon, diamond, offers various electrolyte-stable surface terminations. The H-termination-selective attachment of nitrophenyl diazonium, imaged by AFM, shows that electrochemical oxidation can control the fractional hydrogen/oxygen surface termination of diamond on the nanometer scale. This is of particular interest for all applications relying on interfacial electrochemistry, especially for biointerfaces.

View Article and Find Full Text PDF

Integrated all-diamond ultramicroelectrode arrays (UMEAs) were fabricated using standard photolithography processes. The array consisted of typically 45 ultramicroelectrodes with a diameter of 10 μm and with a center-to-center spacing of 60 μm. The quasi-reference and counter electrodes were made from conductive diamond and were integrated on a 5 × 5 mm(2) chip.

View Article and Find Full Text PDF

Immobilization of proteins on a solid electrode is to date done by chemical cross-linking or by addition of an adjustable intermediate. In this paper we introduce a concept where a solid with variable surface properties is optimized to mediate binding of the electron-transfer protein Cytochrome c (Cyt c) by mimicking the natural binding environment. It is shown that, as a carbon-based material, boron-doped diamond can be adjusted by simple electrochemical surface treatments to the specific biochemical requirements of Cyt c.

View Article and Find Full Text PDF

Silicon carbide has been proved as a candidate for power and high-frequency devices. In this paper, we show the application of nanocrystalline 3C-SiC as an electrochemical electrode and its electrochemical functionalization for biosensing applications. SiC electrodes show a wider potential window and lower background current than glassy carbon electrodes.

View Article and Find Full Text PDF

In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties.

View Article and Find Full Text PDF

In this report, the fabrication of all-nanocrystalline diamond (NCD) nanoelectrode arrays (NEAs) by e-beam lithography as well as of all-diamond nanoelectrode ensembles (NEEs) using nanosphere lithography is presented. In this way, nanostructuring techniques are combined with the excellent properties of diamond that are desirable for electrochemical sensor devices. Arrays and ensembles of recessed disk electrodes with radii ranging from 150 to 250 nm and a spacing of 10 μm have been fabricated.

View Article and Find Full Text PDF

Photonic active diamond nanoparticles attract increasing attention from a wide community for applications in drug delivery and monitoring experiments as they do not bleach or blink over extended periods of time. To be utilized, the size of these diamond nanoparticles needs to be around 4 nm. Cluster formation is therefore the major problem.

View Article and Find Full Text PDF