Publications by authors named "CARRUTHERS C"

Importance: Developmental dyslexia is a heritable learning disability affecting 7% to 10% of the general population and can have detrimental impacts on mental health and vocational potential. Individuals with dyslexia show altered functional organization of the language and reading neural networks; however, it remains unknown how early in life these neural network alterations might emerge.

Objective: To determine whether the early emergence of large-scale neural functional connectivity (FC) underlying long-term language and reading development is altered in infants with a familial history of dyslexia (FHD).

View Article and Find Full Text PDF

The home language and literacy environment (HLLE) in infancy has been associated with subsequent pre-literacy skill development and HLLE at preschool-age has been shown to correlate with white matter organization in tracts that subserve pre-reading and reading skills. Furthermore, childhood socioeconomic status (SES) has been linked with both HLLE and white matter organization. It is important to understand whether the relationships between environmental factors such as HLLE and SES and white matter organization can be detected as early as infancy, as this period is characterized by rapid brain development that may make white matter pathways particularly susceptible to these early experiences.

View Article and Find Full Text PDF

Background: Abbreviated magnetic resonance imaging (Ab-MRI) has been evaluated for elevated breast cancer risk or dense breasts but has not been evaluated across all risk profiles.

Methods: Patients selected underwent Ab-MRI from February 2020 to September 2021. Women were older than aged 30 years, up to date with screening mammography, and paid $299 cash.

View Article and Find Full Text PDF

Functional connectivity (FC) techniques can delineate brain organization as early as infancy, enabling the characterization of early brain characteristics associated with subsequent behavioral outcomes. Previous studies have identified specific functional networks in infant brains that underlie cognitive abilities and pathophysiology subsequently observed in toddlers and preschoolers. However, it is unknown whether and how functional networks emerging within the first 18 months of life contribute to the development of higher order, complex functions of language/literacy at school-age.

View Article and Find Full Text PDF

Language acquisition is of central importance to child development. Although this developmental trajectory is shaped by experience postnatally, the neural basis for language emerges prenatally. Thus, a fundamental question remains: do structural foundations for language in infancy predict long-term language abilities? Longitudinal investigation of 40 children from infancy to kindergarten reveals that white matter in infancy is prospectively associated with subsequent language abilities, specifically between: (i) left arcuate fasciculus and phonological awareness and vocabulary knowledge, (ii) left corticospinal tract and phonological awareness, and bilateral corticospinal tract with phonological memory; controlling for age, cognitive, and environmental factors.

View Article and Find Full Text PDF

The normal development of thalamocortical connections plays a critical role in shaping brain connectivity in the prenatal and postnatal periods. Recent studies using advanced magnetic resonance imaging (MRI) techniques in neonates and infants have shown that abnormal thalamocortical connectivity is associated with adverse neurodevelopmental outcomes. However, all these studies have focused on a single neuroimaging modality, overlooking the dynamic relationship between structure and function at this early stage.

View Article and Find Full Text PDF

mTORC1-dependent translational control plays a key role in several enduring forms of synaptic plasticity such as long term potentiation (LTP) and mGluR-dependent long term depression. Recent evidence demonstrates an additional role in regulating synaptic homeostasis in response to inactivity, where dendritic mTORC1 serves to modulate presynaptic function via retrograde signaling. Presently, it is unclear whether LTP and homeostatic plasticity use a common route to mTORC1-dependent signaling or whether each engage mTORC1 through distinct pathways.

View Article and Find Full Text PDF

The continued decline in medical trainees entering the workforce as clinician-scientists has elevated the need to engage medical students in research. While past studies have shown early exposure to generate interest among medical students for research and academic careers, financial constraints have limited the number of such formal research training programs. In light of recent government budget cuts to support research training for medical students, non-government organizations (NGOs) may play a progressively larger role in supporting the development of clinician-scientists.

View Article and Find Full Text PDF

Unlabelled: Biologic scaffolds composed of extracellular matrix are commonly used in a variety of surgical procedures. The Food and Drug Administration typically regulates biologic scaffolds as medical devices, thus requiring terminal sterilization prior to clinical use. However, to date, no consensus exists for the most effective yet minimally destructive sterilization protocol for biologic scaffold materials.

View Article and Find Full Text PDF

In this study, we evaluated the hypothesis that the constituent fibers follow an affine deformation kinematic model for planar collagenous tissues. Results from two experimental datasets were utilized, taken at two scales (nanometer and micrometer), using mitral valve anterior leaflet (MVAL) tissues as the representative tissue. We simulated MVAL collagen fiber network as an ensemble of undulated fibers under a generalized two-dimensional deformation state, by representing the collagen fibrils based on a planar sinusoidally shaped geometric model.

View Article and Find Full Text PDF

Within each of the four layers of mitral valve (MV) leaflet tissues there resides a heterogeneous population of interstitial cells that maintain the structural integrity of the MV tissue via protein biosynthesis and enzymatic degradation. There is increasing evidence that tissue stress-induced MV interstitial cell (MVIC) deformations can have deleterious effects on their biosynthetic states that are potentially related to the reduction of tissue-level maintenance and to subsequent organ-level failure. To better understand the interrelationships between tissue-level loading and cellular responses, we developed the following integrated experimental-computational approach.

View Article and Find Full Text PDF

The glucocorticoid receptor (GR) N-terminal domain (NTD) contains a transactivation domain (activation function 1; AF-1). GR AF-1 is phosphorylated, but effects of this modification upon AF-1 activity and cofactor recruitment are not completely clear. GR AF-1 activity is mostly confined to a short unstructured domain called tau1c (amino acids 187-244) that contains three phosphorylation sites and binds a short cysteine rich fragment (CH3) of the coactivator CREB binding protein (CBP).

View Article and Find Full Text PDF

Pd3L2 metallo-cryptophane cages with cyclotriveratrylene-type L ligands can be stabilized by use of a bis-N-heterocyclic carbene as an auxiliary cis-protecting ligand, while use of more common protecting chelating ligands such as ethylenediamine saw a Pd3L2 to Pd6L8 rearrangement occur in solution. The crystalline Pd3L2 complexes act as sponges, taking up 1,2-dichorobenzene or iodine in a single-crystal-to-single-crystal fashion despite not exhibiting conventional porosity.

View Article and Find Full Text PDF

In the present work, we demonstrate that the mesoscopic in-plane mechanical behavior of membrane elastomeric scaffolds can be simulated by replication of actual quantified fibrous geometries. Elastomeric electrospun polyurethane (ES-PEUU) scaffolds, with and without particulate inclusions, were utilized. Simulations were developed from experimentally-derived fiber network geometries, based on a range of scaffold isotropic and anisotropic behaviors.

View Article and Find Full Text PDF

Polypropylene has been used as a surgical mesh material for several decades. This non-degradable synthetic polymer provides mechanical strength, a predictable host response, and its use has resulted in reduced recurrence rates for ventral hernia and pelvic organ prolapse. However, polypropylene and similar synthetic materials are associated with a chronic local tissue inflammatory response and dense fibrous tissue deposition.

View Article and Find Full Text PDF

Background: Acellular dermal matrices (ADMs) have been commonly used in expander-based breast reconstruction to provide inferolateral prosthesis coverage. Although the clinical performance of these biologic scaffold materials varies depending on a number of factors, an in-depth systematic characterization of the host response is yet to be performed. The present study evaluates the biochemical composition and structure of two ADMs, AlloDerm(®) Regenerative Tissue Matrix and AlloMax™ Surgical Graft, and provides a comprehensive spatiotemporal characterization in a porcine model of tissue expander breast reconstruction.

View Article and Find Full Text PDF

Background: Aortic valve sclerosis (AVS) is a chronic progressive disease involving lipid infiltration, inflammation, and tissue calcification. Despite its high prevalence, there are currently no clinically approved pharmaceuticals for the management of AVS. The objective of the current study was to elucidate the effects of an angiotensin II type 1 receptor blocker, alone or in combination with statin therapy, on the progression of AVS.

View Article and Find Full Text PDF

Two amyloid-β peptides (Aβ40 and Aβ42) feature prominently in the extracellular brain deposits associated with Alzheimer's disease. While Aβ40 is the prevalent form in the cerebrospinal fluid, the fraction of Aβ42 increases in the amyloid deposits over the course of disease development. The low in vivo concentration (pM-nM) and metastable nature of Aβ oligomers have made identification of their size, composition, cellular binding sites and mechanism of action challenging and elusive.

View Article and Find Full Text PDF

The attenuation of sedimentation and convection in microgravity can sometimes decrease irregularities formed during macromolecular crystal growth. Current terrestrial protein crystal growth (PCG) capabilities are very different than those used during the Shuttle era and that are currently on the International Space Station (ISS). The focus of this experiment was to demonstrate the use of a commercial off-the-shelf, high throughput, PCG method in microgravity.

View Article and Find Full Text PDF

The basement membrane complex (BMC) is a critical component of the extracellular matrix (ECM) that supports and facilitates the growth of cells. This study investigates four detergents commonly used in the process of tissue decellularization and their effect upon the BMC. The BMC of porcine urinary bladder was subjected to 3% Triton-X 100, 8mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 4% sodium deoxycholate or 1% sodium dodecyl sulfate (SDS) for 24h.

View Article and Find Full Text PDF
Article Synopsis
  • Surgical mesh made from synthetic materials helps fix ventral hernias because it is strong and integrates well into the body, but it can cause pain and other issues.
  • A new method uses a natural coating called porcine dermal ECM to improve how the body reacts to the mesh, reducing inflammation and discomfort.
  • In tests, the ECM-coated mesh led to a better healing response compared to regular synthetic mesh, but all types of mesh had similar strength when tested for movement.
View Article and Find Full Text PDF

Biologic scaffolds composed of extracellular matrix (ECM) are commonly used to facilitate a constructive remodeling response in several types of tissue, including the esophagus. Surgical manipulation of the esophagus is often complicated by stricture, but preclinical and clinical studies have shown that the use of an ECM scaffold can mitigate stricture and promote a constructive outcome after resection of full circumference esophageal mucosa. Recognizing the potential benefits of ECM derived from homologous tissue (i.

View Article and Find Full Text PDF

The engineering foundation for novel approaches for the repair of congenital defects that involve the main pulmonary artery (PA) must rest on an understanding of changes in the structure-function relationship that occur during postnatal maturation. In the present study, we quantified the postnatal growth patterns in structural and biomechanical behavior in the ovine PA in the juvenile and adult stages. The biaxial mechanical properties and collagen and elastin fiber architecture were studied in four regions of the PA wall, with the collagen recruitment of the medial region analyzed using a custom biaxial mechanical-multiphoton microscopy system.

View Article and Find Full Text PDF