Pharmacogenomics, the study of how an individual's genetic makeup influences their response to medications, is a rapidly evolving field with significant implications for personalized medicine. As researchers and healthcare professionals face challenges in exploring the intricate relationships between genetic profiles and therapeutic outcomes, the demand for effective and user-friendly tools to access and analyze genetic data related to drug responses continues to grow. To address these challenges, we have developed PGxDB, an interactive, web-based platform specifically designed for comprehensive pharmacogenomics research.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are membrane-spanning transducers mediating the actions of numerous physiological ligands and drugs. The GPCR database GPCRdb supports a large global research community with reference data, analysis, visualization, experiment design and dissemination. Here, we describe our sixth major GPCRdb release starting with an overview of all resources for receptors and ligands.
View Article and Find Full Text PDFLysine-specific histone demethylase 1 (LSD1), which demethylates mono- or di- methylated histone H3 on lysine 4 (H3K4me1/2), is essential for early embryogenesis and development. Here we show that LSD1 is dispensable for mouse embryonic stem cell (ESC) self-renewal but is required for mouse ESC growth and differentiation. Reintroduction of a catalytically-impaired LSD1 (LSD1) recovers the proliferation capability of mouse ESCs, yet the enzymatic activity of LSD1 is essential to ensure proper differentiation.
View Article and Find Full Text PDFBiochemical crosstalk between two or more histone modifications is often observed in epigenetic enzyme regulation, but its functional significance in cells has been difficult to discern. Previous enzymatic studies revealed that Lys14 acetylation of histone H3 can inhibit Lys4 demethylation by lysine-specific demethylase 1 (LSD1). In the present study, we engineered a mutant form of LSD1, Y391K, which renders the nucleosome demethylase activity of LSD1 insensitive to Lys14 acetylation.
View Article and Find Full Text PDFG proteins are the major signal proteins of ∼800 receptors for medicines, hormones, neurotransmitters, tastants and odorants. GproteinDb offers integrated genomic, structural, and pharmacological data and tools for analysis, visualization and experiment design. Here, we present the first major update of GproteinDb greatly expanding its coupling data and structural templates, adding AlphaFold2 structure models of GPCR-G protein complexes and advancing the interactive analysis tools for their interfaces underlying coupling selectivity.
View Article and Find Full Text PDFNPAC is a transcriptional co-activator widely associated with the H3K36me3 epigenetic marks present in the gene bodies. NPAC plays a fundamental role in RNA polymerase progression, and its depletion downregulates gene transcription. In this chapter, we review the current knowledge on the functional and structural features of this multi-domain protein.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are physiologically abundant signaling hubs routing hundreds of extracellular signal substances and drugs into intracellular pathways. The GPCR database, GPCRdb supports >5000 interdisciplinary researchers every month with reference data, analysis, visualization, experiment design and dissemination. Here, we present our fifth major GPCRdb release setting out with an overview of the many resources for receptor sequences, structures, and ligands.
View Article and Find Full Text PDFCircular RNAs (circRNAs) are known to act as important regulators of the microRNA (miRNA) activity. Yet, computational resources to identify miRNA:circRNA interactions are mostly limited to already annotated circRNAs or affected by high rates of false positive predictions. To overcome these limitations, we developed Circr, a computational tool for the prediction of associations between circRNAs and miRNAs.
View Article and Find Full Text PDFThe histone demethylase KDM1A is a multi-faceted regulator of vital developmental processes, including mesodermal and cardiac tube formation during gastrulation. However, it is unknown whether the fine-tuning of KDM1A splicing isoforms, already shown to regulate neuronal maturation, is crucial for the specification and maintenance of cell identity during cardiogenesis. Here, we discovered a temporal modulation of ubKDM1A and KDM1A+2a during human and mice fetal cardiac development and evaluated their impact on the regulation of cardiac differentiation.
View Article and Find Full Text PDFBiocatalysis is a key tool in both green chemistry and biorefinery fields. NOV1 is a dioxygenase that catalyzes the one-step, coenzyme-free oxidation of isoeugenol into vanillin and holds enormous biotechnological potential for the complete valorization of lignin as a sustainable starting material for biobased chemicals, polymers, and materials. This study integrates computational, kinetic, structural, and biophysical approaches to characterize a new NOV1 variant featuring improved activity and stability compared to those of the wild type.
View Article and Find Full Text PDFThe advent of single-cell sequencing is providing unprecedented opportunities to disentangle tissue complexity and investigate cell identities and functions. However, the analysis of single cell data is a challenging, multi-step process that requires both advanced computational skills and biological sensibility. When dealing with single cell RNA-seq (scRNA-seq) data, the presence of technical artifacts, noise, and biological biases imposes to first identify, and eventually remove, unreliable signals from low-quality cells and unwanted sources of variation that might affect the efficacy of subsequent downstream modules.
View Article and Find Full Text PDFThe ability to detect and target β cells in vivo can substantially refine how diabetes is studied and treated. However, the lack of specific probes still hampers a precise characterization of human β cell mass and the delivery of therapeutics in clinical settings. Here, we report the identification of two RNA aptamers that specifically and selectively recognize mouse and human β cells.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2022
As regioisomers/bioisosteres of , a 4-phenylbenzamide tranylcypromine (TCP) derivative previously disclosed by us, we report here the synthesis and biological evaluation of some (hetero)arylbenzoylamino TCP derivatives -, in which the 4-phenyl moiety of was shifted at the benzamide C3 position or replaced by 2- or 3-furyl, 2- or 3-thienyl, or 4-pyridyl group, all at the benzamide C4 or C3 position. In anti-LSD1-CoREST assay, all the derivatives were more effective than the analogues, with the thienyl analogs and being the most potent (IC values = 0.015 and 0.
View Article and Find Full Text PDFTwo-thirds of signaling substances, several sensory stimuli and over one-third of drugs act via receptors coupling to G proteins. Here, we present an online platform for G protein research with reference data and tools for analysis, visualization and design of scientific studies across disciplines and areas. This platform may help translate new pharmacological, structural and genomic data into insights on G protein signaling vital for human physiology and medicine.
View Article and Find Full Text PDFCancer is characterized by pervasive epigenetic alterations with enhancer dysfunction orchestrating the aberrant cancer transcriptional programs and transcriptional dependencies. Here, we epigenetically characterize human colorectal cancer (CRC) using de novo chromatin state discovery on a library of different patient-derived organoids. By exploring this resource, we unveil a tumor-specific deregulated enhancerome that is cancer cell-intrinsic and independent of interpatient heterogeneity.
View Article and Find Full Text PDFLocal delivery of anticancer agents has the potential to maximize treatment efficacy and minimize the acute and long-term systemic toxicities. Here, we used unsupervised systematic evolution of ligands by exponential enrichment to identify four RNA aptamers that specifically recognized mouse and human myeloid cells infiltrating tumors but not their peripheral or circulating counterparts in multiple mouse models and from patients with head and neck squamous cell carcinoma (HNSCC). The use of these aptamers conjugated to doxorubicin enhanced the accumulation and bystander release of the chemotherapeutic drug in both primary and metastatic tumor sites in breast and fibrosarcoma mouse models.
View Article and Find Full Text PDFSince the pioneering NCI-60 panel of the late'80's, several major screenings of genetic profiling and drug testing in cancer cell lines have been conducted to investigate how genetic backgrounds and transcriptional patterns shape cancer's response to therapy and to identify disease-specific genes associated with drug response. Historically, pharmacogenomics screenings have been largely heterogeneous in terms of investigated cell lines, assay technologies, number of compounds, type and quality of genomic data, and methods for their computational analysis. The analysis of this enormous and heterogeneous amount of data required the development of computational methods for the integration of genomic profiles with drug responses across multiple screenings.
View Article and Find Full Text PDFSummary: Here we present APTANI2, an expanded and optimized version of APTANI, a computational tool for selecting target-specific aptamers from high-throughput-Systematic Evolution of Ligands by Exponential Enrichment data through sequence-structure analysis. As compared to its original implementation, APTANI2 ranks aptamers and identifies relevant structural motifs through the calculation of a score that combines frequency and structural stability of each secondary structure predicted in any aptamer sequence. In addition, APTANI2 comprises modules for a deeper investigation of sequence motifs and secondary structures, a graphical user interface that enhances its usability, and coding solutions that improve performances.
View Article and Find Full Text PDFPurpose: Primary breast and prostate cancers can be cured, but metastatic disease cannot. Identifying cell factors that predict metastatic potential could guide both prognosis and treatment.
Methods: We used Cell-SELEX to screen an RNA aptamer library for differential binding to prostate cancer cell lines with high vs.
Several major screenings of genetic profiling and drug testing in cancer cell lines proved that the integration of genomic portraits and compound activities is effective in discovering new genetic markers of drug sensitivity and clinically relevant anticancer compounds. Despite most genetic and drug response data are publicly available, the availability of user-friendly tools for their integrative analysis remains limited, thus hampering an effective exploitation of this information. Here, we present GDA, a web-based tool for Genomics and Drugs integrated Analysis that combines drug response data for >50 800 compounds with mutations and gene expression profiles across 73 cancer cell lines.
View Article and Find Full Text PDFTargeted anticancer therapies represent the most effective pharmacological strategies in terms of clinical responses. In this context, genetic alteration of several oncogenes represents an optimal predictor of response to targeted therapy. Integration of large-scale molecular and pharmacological data from cancer cell lines promises to be effective in the discovery of new genetic markers of drug sensitivity and of clinically relevant anticancer compounds.
View Article and Find Full Text PDFMotivation: Aptamers are synthetic nucleic acid molecules that can bind biological targets in virtue of both their sequence and three-dimensional structure. Aptamers are selected using SELEX, Systematic Evolution of Ligands by EXponential enrichment, a technique that exploits aptamer-target binding affinity. The SELEX procedure, coupled with high-throughput sequencing (HT-SELEX), creates billions of random sequences capable of binding different epitopes on specific targets.
View Article and Find Full Text PDFNouv Presse Med
December 1979
Fourteen cirrhotic patients underwent distal splenorenal shunt to prevent recurrent hemorrhage from oesophageal varices. No post-operative mortality was observed. Transitory chylous ascites occured in 1 patient, portal thrombosis with concomitant early rebleeding in another one.
View Article and Find Full Text PDFSurg Gynecol Obstet
May 1979
Five patients with primitive chronic Budd-Chiari syndrome were treated by Dacron interposed mesocaval shunts for medically uncontrollable ascites. In two instances, hepatomegaly and ascites disappeared for four and four and one-half years. In one patient with severe stenosis of the inferior vena cava, moderate ascites required tapping once a month one year later, despite proved prosthesis patency.
View Article and Find Full Text PDF