CO capture is an important process for mitigating CO emissions in the atmosphere. Recently, ionic liquids have been identified as possible systems for CO capture processes. Major drawbacks of such systems are mostly in the high cost of synthesis of such liquids and poor biodegradability.
View Article and Find Full Text PDFThe flow of water confined in nanosize capillaries is subject of intense research due to its relevance in the fabrication of nanofluidic devices and in the development of theories for fluid transport in porous media. Here, using molecular dynamics simulations carried out on 2D capillaries made up of graphite, hexagonal boron nitride (hBN) and a mix of the two, and of sizes from subnanometer to few nanometers, we investigate the relationship between the wettability of the wall capillary, the water diffusion, and its flow rate. We find that the water diffusion is decoupled from its flow properties as the former is not affected either by the height or chemistry of the capillary (except for the subnanometer slits), while the latter is dependent on both.
View Article and Find Full Text PDFIt has recently been demonstrated that aqueous lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium chloride (LiCl) solutions can form stable liquid-liquid biphasic systems when both electrolyte phases have sufficiently high concentrations. In this work, we combine molecular dynamics simulations and experimental analysis to investigate what drives the formation of the interface and how the interfacial molecular structure correlates with its thermodynamic stability. We observe that at the liquid-vapour interface, TFSI anions exhibit surfactant-like properties, leading to a reduction in surface tension and an increase in interfacial thickness.
View Article and Find Full Text PDFBackground: Transgender and gender diverse (TGD) individuals face significant healthcare barriers, with one of the most critical being the inadequate knowledge and skills of healthcare professionals (HCPs) in TGD health. To address this issue, we undertook a project to develop a distance learning course for all healthcare professions, encompassing a comprehensive range of topics related to TGD health issues.
Objectives: This study aimed to evaluate the impact of a course on gender-affirming healthcare competence, with a focus on knowledge acquisition and satisfaction levels.
Polymer composite materials require softening to reduce their glass transition temperature and improve processability. To this end, plasticizers (PLs), which are small organic molecules, are added to the polymer matrix. The miscibility of these PLs has a large impact on their effectiveness and, therefore, their interactions with the polymer matrix must be carefully considered.
View Article and Find Full Text PDFInnovative models of medical and psychiatric care are necessary to address the complex needs of individuals with intellectual and developmental disabilities (IDD), including autism. This article describes a subspecialty medical home program that has provided accessible, comprehensive, coordinated, patient- and family-centered care for this high-needs, underserved patient population. For more than two decades, the University of Utah Huntsman Mental Health Institute Neurobehavior HOME Program (HOME) has provided primary and behavioral health care for individuals with IDD across their lifespan.
View Article and Find Full Text PDFDeciphering the mechanisms of charge storage on carbon-based materials is pivotal for the development of next-generation electrochemical energy storage systems. Graphene, the building block of graphitic electrodes, is an ideal model for probing such processes on a fundamental level. Herein, we investigate the thermodynamics of the graphene/aqueous electrolyte interface by utilizing a multiscale quantum mechanics-classical molecular dynamics (QM/MD) approach to provide insights into the effect of alkali metal ion (Li) concentration on the interfacial tension (γ) of the charged graphene/electrolyte interface.
View Article and Find Full Text PDFGraphene oxide (GO) membranes are known to have a complex morphology that depends on the degree of oxidation of the graphene flake and the membrane preparation technique. In this study, using Grand Canonical Monte Carlo simulations, we investigate the mechanism of swelling of GO membranes exposed to different relative humidity (RH) values and show how this is intimately related to the graphene surface chemistry. We show that the structure of the GO membrane changes while the membrane adsorbs water from the environment and that graphene oxide flakes become charged as the membrane is loaded with water and swells.
View Article and Find Full Text PDFThis dataset contains experimental data of capacity and electrochemical impedance of five Lithium Polymer (LiPo) batteries (model LP-503562-IS-3 manufactured by BAK Technology). All batteries have been subjected to hundreds of charge-discharge cycles to obtain their characteristics at different states-of-health. Capacities have been measured under both standard and stress conditions.
View Article and Find Full Text PDFTraumatic brain injury (TBI) often results in heterogenous lesions that can be visualized through various neuroimaging techniques, such as magnetic resonance imaging (MRI). However, injury burden varies greatly between patients and structural deformations often impact usability of available analytic algorithms. Therefore, it is difficult to segment lesions automatically and accurately in TBI cohorts.
View Article and Find Full Text PDFHeterogenisation of homogeneous catalysts onto solid supports represents a potential strategy to make the homogeneous catalytic function recyclable and reuseable. Yet, it is usually the case that immobilised catalysts have much lower catalytic activity than their homogeneous counterpart. In addition, the presence of a solid interface introduces a higher degree of complexity by modulating solid/fluid interactions, which can often influence adsorption properties of solvents and reactive species and, ultimately, catalytic activity.
View Article and Find Full Text PDFIn organic polymeric materials with mixed ionic and electronic conduction (OMIEC), the excess charge in doped polymers is very mobile and the dynamics of the polymer chain cannot be accurately described with a model including only fixed point charges. Ions and polymer are comparatively slower and a methodology to capture the correlated motions of excess charge and ions is currently unavailable. Considering a prototypical interface encountered in this type of materials, we constructed a scheme based on the combination of MD and QM/MM to evaluate the classical dynamics of polymer, water and ions, while allowing the excess charge of the polymer chains to rearrange following the external electrostatic potential.
View Article and Find Full Text PDFWe present the coupling of two frameworks-the pseudo-open boundary simulation method known as constant potential molecular dynamics simulations (CμMD), combined with quantum mechanics/molecular dynamics (QMMD) calculations-to describe the properties of graphene electrodes in contact with electrolytes. The resulting CμQMMD model was then applied to three ionic solutions (LiCl, NaCl, and KCl in water) at bulk solution concentrations ranging from 0.5 M to 6 M in contact with a charged graphene electrode.
View Article and Find Full Text PDFPlasticisers are small organic molecules routinely added to polymer composites that modify the processability of the compounds by adsorbing on the filler's surface or dispersing into the polymer matrix. Here using a simple yet chemically specific coarse-grained model, we demonstrate that the filler surface coverage and the degree of dispersion into the polymer matrix can be tuned without modifying the chemistry of the plasticisers but only by varying their conformational flexibility. We show that when the adsorption mechanism and clustering into the bulk are entropically driven as in this work, this is a general phenomenon independent on the polymer chemistry and its molecular weight.
View Article and Find Full Text PDFThis dataset consists of electrochemical impedance spectroscopy measurements on commonly-used batteries, namely Samsung ICR18650-26J cylindrical Lithium-Ion cells. The complex impedance of the batteries was measured at a set of fourteen different frequencies from 0.05 Hz to 1000 Hz, using a random-phase multi-sine excitation signal.
View Article and Find Full Text PDFDietary surveys are conducted to examine the population's dietary patterns that require a complex system of databases, and rules for constructing the data matrix (precision, coding, deriving new variables, e.g., body mass index from individual's height and weight, classes, e.
View Article and Find Full Text PDFDecades of work in the field of computational study of semiconducting polymers using atomistic models illustrate the challenges of generating equilibrated models for this class of materials. While adopting a coarse-grained model can be helpful, the process of developing a suitable model is particularly non-trivial and time-consuming for semiconducting polymers due to a large number of different interactions with some having an anisotropic nature. This work introduces a procedure for the rapid generation of a hybrid model for semiconducting polymers where atoms of secondary importance (those in the alkyl side chains) are transformed into coarse-grained beads to reduce the computational cost of generating an equilibrated structure.
View Article and Find Full Text PDFThe homogeneous covering of amphiphillic polymer molecules onto metallic surfaces is of great importance for corrosion inhibitor applications. Lyophillic side chains grafted onto a lyophobic backbone act as anchors that allow the molecule to absorb at the metallic surface preventing the exposure with the solvent. Coarse-grained simulations are used to study the sorption and conformation behaviour of amphiphillic grafted polymers for corrosion inhibition.
View Article and Find Full Text PDFGraphene-based nanochannels are a popular choice in emerging nanofluidics applications because of their tunable and nanometer-scale channels. In this work, molecular dynamics (MD) simulations were employed both to (i) assess the stability of dry and hydrated graphene nanochannels and (ii) elucidate the properties of water confined in these channels, using replica-scale models with 0.66-2.
View Article and Find Full Text PDF