Retinol-binding protein and its complex with prealbumin were isolated from goat serum by chromatography on DEAE-Sephadex A-50, gel filtration and immuno-affinity chromatography on antigoat-serum albumin-Sepharose 4B. The homogeneous prealbumin-retinol-binding protein complex had a molecular weight of 75 000. Both on electrophoresis and in the presence of 2 M urea, the complex dissociated into retinol-binding protein and prealbumin.
View Article and Find Full Text PDFThe mechanism underlying homeostatic regulation of the plasma levels of free retinol-binding protein and free thyroxine, the systemic distribution of which is of great importance, has been investigated. A simple method has been developed to determine the rate of dissociation of a ligand from the binding protein. Analysis of the dissociation process of retinol-binding protein from prealbumin-2 reveals that the free retinol-binding protein pool undergoes massive flux, and that prealbumin-2 participates in homeostatic regulation of the free retinol-binding protein pool.
View Article and Find Full Text PDFThe inverse relationship that exists between thyroxine and the vitamin A level of plasma has been examined in chicken. Thyroxine treatment leads to a decrease in the level of vitamin A carrier proteins, retinol-binding protein and prealbumin-2 in plasma and liver. There is an accumulation of vitamin A in the liver, with a greater proportion of vitamin A alcohol being present compared to that of control birds.
View Article and Find Full Text PDF1. The binding parameters of prealbumin-2 with retinol-binding protein and thyroxine (T4) revealed the existence of distinct and multiple sites for both retinol-binding protein and T4. 2.
View Article and Find Full Text PDFInt J Vitam Nutr Res
January 1976
A new analogue of vitamin A, viz., retinoic acid anhydride was prepared, for the first time, by the action of thionyl chloride on retinoic acid in benzene containing pyridine. The amhydride was charcterised by its chromatographic properties, elemental analysis, ultraviolet absorption, infrared and nuclear magnetic resonance spectral characteristics.
View Article and Find Full Text PDFInt J Vitam Nutr Res
November 1974
Int J Vitam Nutr Res
September 1973
Int J Vitam Nutr Res
June 1973
Indian J Biochem Biophys
December 1972
Int J Vitam Nutr Res
January 1973
Int J Vitam Nutr Res
October 1972