Publications by authors named "CA Randall"

Although alcohol and nicotine are two of the most commonly co-used drugs with upwards of 90% of adults with an alcohol use disorder (AUD) in the US also smoking, we don't tend to study alcohol and nicotine use this way. The current studies sought to develop and assess a novel alcohol + nicotine co-access self-administration (SA) model in adult male and female Long-Evans rats. Further, both drugs are implicated in neuroimmune function, albeit in largely opposing ways.

View Article and Find Full Text PDF

Long-time electric field action on perovskite piezoelectric ceramic leads to chemical degradation. A new way to accelerate the degradation is the exposure of the ceramic to DC electric fields under a vacuum. A high-quality commercial piezoelectric material based on PbZrTiO is used to study such impacts.

View Article and Find Full Text PDF

Nicotine and alcohol co-use is extremely common and their use constitutes two of the most common causes of preventable death, yet the underlying biological mechanisms are largely understudied. Activation of neuroimmune toll-like receptors (TLRs) promotes the induction of proinflammatory cascades and increases alcohol intake in rodents, which further promotes TLRs in the brain; nicotine may decrease central proinflammatory signaling. The current studies sought to determine the effects of nicotine ± alcohol (alone or in combination) on circulating blood plasma and TLR protein/gene expression in addiction-associated corticolimbic brain regions, including the prefrontal cortex-prelimbic (mPFC-PL) and nucleus accumbens core (AcbC).

View Article and Find Full Text PDF

Advancing the atomistic level understanding of aqueous dissolution of multicomponent materials is essential. We combined ReaxFF and experiments to investigate the dissolution at the LiAlTi(PO)-water interface. We demonstrate that surface dissolution is a sequentially dynamic process.

View Article and Find Full Text PDF

A family of three phase, polymer-ceramic-metal (Poly-cer-met) electrically conducting composites was developed via cold sintering for acoustic matching application in medical ultrasound transducers. A range of acoustic impedance ( Z ) between MRayl with low attenuation (<3.5 dB/mm, measured at 10 MHz) was achieved in composites of zinc oxide, silver, and in thermoplastic polymers like Ultem polyetherimide (PEI) or polytetrafluoroethylene (PTFE) at sintering pressure less than 50 MPa and temperature of 150 °C.

View Article and Find Full Text PDF

Electrodes for solid-state batteries require the conduction of both ions and electrons for extraction of the energy from the active material. In this study, we apply cold sintering to a model composite cathode system to study how low-temperature densification enables a degree of control over the mixed conducting properties of such systems. The model system contains the NASICON-structured NaV(PO) (NVP) active material, NASICON-structured solid electrolyte (NaZrSiPO, NZSP), and electron-conducting carbon nanofiber (CNF).

View Article and Find Full Text PDF

Cold sintering (CS) is a chemically driven densification technique enabling a substantial decrease in the sintering temperature of oxides, by several hundreds of degrees Celsius. Although the densification process in CS is known to be mainly driven by pressure solution creep, additional fundamental aspects driving the interfacial chemistry reactions are still a subject of debate. Herein, we focus on the aspect of speciation in the densification process.

View Article and Find Full Text PDF

Molten hydroxides, often used for crystal growth and nanoparticle synthesis, have recently been applied for the single step densification of several inorganic materials under moderate uniaxial pressures and 1000 °C below their usual sintering temperatures. The latter approach, termed cold sintering process (CSP), is a mechanochemically driven process that enables the densification of inorganic materials through a dissolution-precipitation creep mechanism. In this study, we report the main densification mechanisms of BaTiO in a NaOH-KOH eutectic mixture.

View Article and Find Full Text PDF

The cold sintering process (CSP) densifies ceramics at much lower temperatures than conventional sintering processes. Several ceramics and composite systems have been successfully densified under cold sintering. For the grain growth kinetics of zinc oxide, reduced activation energies are shown, and yet the mechanism behind this growth is unknown.

View Article and Find Full Text PDF

Winters, JD, Heebner, NR, Johnson, AK, Poploski, KM, Royer, SD, Nagai, T, Randall, CA, Abt, JP, and Lephart, SM. Altered physical performance following advanced special operations tactical training. J Strength Cond Res 35(7): 1809-1816, 2021-The purpose of this study was to determine how the unique challenges of specific military tactical training phases influence overall physical performance characteristics.

View Article and Find Full Text PDF

The reaction dynamics of a liquid-solid interface with the example of an acetic acid/water solution interacting with a ZnO(101̅0) surface was investigated using ReaxFF reactive force field-based molecular dynamics. The interactions were studied over a broad temperature range to assess the kinetics and reaction pathways. Two different acetic acid dissociation mechanisms are observed in the simulations: (1) deprotonation to surface cation, which produces a terminal hydroxyl and (2) deprotonation to a bridging hydroxyl, which results in water production.

View Article and Find Full Text PDF

We developed a ReaxFF reactive force field for NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP) materials, which is a promising solid-electrolyte that may enable all-solid-state lithium-ion batteries. The force field parameters were optimized based on density functional theory (DFT) data, including equations of state and the heats of formation of ternary metal oxides and metal phosphate crystal phases (e.g.

View Article and Find Full Text PDF

Nanocomposites containing 2D materials have attracted much attention due to their potential for enhancing electrical, magnetic, optical, mechanical, and thermal properties. However, it has been a challenge to integrate 2D materials into ceramic matrices due to interdiffusion and chemical reactions at high temperatures. A recently reported sintering technique, the cold sintering process (CSP), which densifies ceramics with the assistance of transient aqueous solutions, provides a means to circumvent the aforementioned problems.

View Article and Find Full Text PDF

Dense (>96% theoretical) strontium titanate ceramics were fabricated at 950 °C (conventional sintering temperature > 1400 °C) using a reactive intermediate phase cold sintering process. An aqueous solution of SrCl mixed with TiO nanoparticles was added to SrTiO powders and pressed at 180 °C to obtain a highly compacted green body. During the post-press heating step at 950 °C, the TiO and SrCl create in-filling micro-reactions around each grain resulting in dense (>96%) SrTiO ceramics.

View Article and Find Full Text PDF

The intermolecular structure formation in liquid and supercritical acetic acid-water mixtures was investigated using ReaxFF-based molecular dynamics simulations. The microscopic structures of acetic acid-water mixtures with different acetic acid mole fractions (1.0 ≥ x ≥ 0.

View Article and Find Full Text PDF

We report on the detection of electric field-induced second harmonic generation (EFISHG) from the anode interfaces of reduced and oxidized Fe-doped SrTiO₃ (Fe:STO) single crystals. For the reduced crystal, we observe steady enhancements of the susceptibility components as the imposed -voltage increases. The enhancements are attributed to a field-stabilized electrostriction, leading to Fe:Ti-O bond stretching and bending in Fe:Ti-O₆ octahedra.

View Article and Find Full Text PDF

Dielectric spectroscopy was performed on a Nb and In co-doped rutile TiO nano-crystalline ceramic (n-NITO) synthesized by a low-temperature spark plasma sintering (SPS) technique. The dielectric properties of the n-NITO were not largely affected by the metal electrode contacts. Huge dielectric relaxation was observed at a very low temperature below 35 K.

View Article and Find Full Text PDF

In previous work, it was demonstrated that using LiCO-coated Ni particles in the manufacturing of multilayer ceramic capacitor (MLCC) devices could improve both the permittivity and dissipation factors. However, adding Li ions to the system gave rise to the concern that ions could migrate under sustained electrical fields and thereby increase the degradation rates of the insulation resistance in MLCCs. In this paper, thermally stimulated depolarization current and highly accelerated lifetime testing were both utilized to evaluate the oxygen vacancy space-charge regions and migration in MLCCs.

View Article and Find Full Text PDF

Both LiCO-coated nickel particles and fast firing technique were utilized in the manufacturing of MLCCs. They preserved the conductivity of Ni electrodes and provided the possibility of sintering the devices in oxidizing atmospheres. By using our method, the partial pressure of oxygen increased from 10 atm in conventional methods to 10 atm.

View Article and Find Full Text PDF

This paper describes a sintering technique for ceramics and ceramic-based composites, using water as a transient solvent to effect densification (i.e. sintering) at temperatures between room temperature and 200 °C.

View Article and Find Full Text PDF

The sintering process is an essential step in taking particulate materials into dense ceramic materials. Although a number of sintering techniques have emerged over the past few years, the sintering process is still performed at high temperatures. Here we establish a protocol to achieve dense ceramic solids at extremely low temperatures (<200 °C) via integrating the particle nanotechnology into the recently developed cold sintering process (CSP).

View Article and Find Full Text PDF

Sintering is a thermal treatment process that is generally applied to achieve dense bulk solids from particulate materials below the melting temperature. Conventional sintering of polycrystalline ceramics is prevalently performed at quite high temperatures, normally up to 1000 to 1200 °C for most ceramic materials, typically 50% to 75% of the melting temperatures. Here we present a new sintering route to achieve dense ceramics at extraordinarily low temperatures.

View Article and Find Full Text PDF

Although many techniques have been applied to protect nickel (Ni) alloys from oxidation at intermediate and high temperatures, the potential of atomic layer deposition (ALD) coatings has not been fully explored. In this paper, the application of ALD coatings (HfO2, Al2O3, SnO2, and ZnO) on Ni foils has been evaluated by electrical characterization and transmission electron microscopy analyses in order to assess their merit to increase Ni oxidation resistance; particular consideration was given to preserving Ni electrical conductivity at high temperatures. The results suggested that as long as the temperature was below 850 °C, the ALD coatings provided a physical barrier between outside oxygen and Ni metal and hindered the oxygen diffusion.

View Article and Find Full Text PDF

This study investigated whether torso and thigh precooling during a warm-up effects neuromuscular function and 5-km time-trial performance in hot, humid conditions. Eight well-trained male runners completed 3 randomized time-trials in 32.2 ± 0.

View Article and Find Full Text PDF