Publications by authors named "CA Back"

Article Synopsis
  • * This experiment produced 2.05 MJ of laser energy, resulting in 3.1 MJ of total fusion yield, which exceeds the Lawson criterion for ignition, demonstrating a key milestone in fusion research.
  • * The report details the advancements in target design, laser technology, and experimental methods that contributed to this historic achievement, validating over five decades of research in laboratory fusion.
View Article and Find Full Text PDF
Article Synopsis
  • * In inertially confined fusion, ignition allows the fusion process to spread into surrounding fuel, potentially leading to higher energy output.
  • * Recent experiments at the National Ignition Facility achieved capsule gains of 5.8 and approached ignition, even though "scientific breakeven" has not yet been fully realized.
View Article and Find Full Text PDF

Measurements of x-ray-driven implosions with charged particles have resulted in the quantitative characterization of critical aspects of indirect-drive inertial fusion. Three types of spontaneous electric fields differing in strength by two orders of magnitude, the largest being nearly one-tenth of the Bohr field, were discovered with time-gated proton radiographic imaging and spectrally resolved proton self-emission. The views of the spatial structure and temporal evolution of both the laser drive in a hohlraum and implosion properties provide essential insight into, and modeling validation of, x-ray-driven implosions.

View Article and Find Full Text PDF

We report on the first proton radiography of laser-irradiated hohlraums. This experiment, with vacuum gold (Au) hohlraums, resulted in observations of self-generated magnetic fields with peak values approximately 10;{6} G. Time-gated radiographs of monoenergetic protons with discrete energies (15.

View Article and Find Full Text PDF

Time-gated, monoenergetic radiography with 15-MeV protons provides unique measurements of implosion dynamics in direct-drive inertial-confinement fusion. Images obtained during acceleration, coasting, deceleration, and stagnation display a comprehensive picture of spherical implosions. Critical information inferred from such images, hitherto unavailable, characterizes the spatial structure and temporal evolution of self-generated fields and plasma areal density.

View Article and Find Full Text PDF

On the first inertial-confinement-fusion ignition facility, the target capsule will be DT filled through a long, narrow tube inserted into the shell. microg-scale shell perturbations Delta m' arising from multiple, 10-50 microm-diameter, hollow SiO2 tubes on x-ray-driven, ignition-scale, 1-mg capsules have been measured on a subignition device. Simulations compare well with observation, whence it is corroborated that Delta m' arises from early x-ray shadowing by the tube rather than tube mass coupling to the shell, and inferred that 10-20 microm tubes will negligibly affect fusion yield on a full-ignition facility.

View Article and Find Full Text PDF

We have measured the production of hnu approximately 4.7 keV x rays from low-density Ti-doped aerogel (rho approximately 3 mg/cc) targets at the OMEGA laser facility (University of Rochester), with the goal of maximizing x-ray output. Forty OMEGA beams (lambda(L)=0.

View Article and Find Full Text PDF

Novel, efficient x-ray sources have been created by supersonically heating a large volume of Xe gas. A laser-induced bleaching wave quickly ionizes the high- Z gas, and the resulting plasma emits x rays. This method significantly improves the production of hard x rays because less energy is lost to kinetic energy and sub-keV x rays.

View Article and Find Full Text PDF

We have made the first detailed measurements of a diffusive supersonic radiation wave in the laboratory. A 10 mg/cm(3) SiO2 foam is radiatively heated by the x-ray flux from a laser-irradiated hohlraum. The resulting radiation wave propagates axially through the optically thick foam and is measured via time-resolved x-ray imaging as it breaks out the far end.

View Article and Find Full Text PDF