Despite the recent progress, current treatment modalities are not able to eradicate cancer. We show that Microbeam Radiotherapy (MRT), an innovative type of Spatially Fractionated Radiotherapy, can control murine melanoma by activating the host's own immune system. The beneficial effects are very pronounced in comparison to uniform radiotherapy traditionally employed in the clinic.
View Article and Find Full Text PDFThere is a need for methods that can image chromosomes with genome-wide coverage, as well as greater genomic and optical resolution. We introduce OligoFISSEQ, a suite of three methods that leverage fluorescence in situ sequencing (FISSEQ) of barcoded Oligopaint probes to enable the rapid visualization of many targeted genomic regions. Applying OligoFISSEQ to human diploid fibroblast cells, we show how four rounds of sequencing are sufficient to produce 3D maps of 36 genomic targets across six chromosomes in hundreds to thousands of cells, implying a potential to image thousands of targets in only five to eight rounds of sequencing.
View Article and Find Full Text PDFMembraneless pericentromeric heterochromatin (PCH) domains play vital roles in chromosome dynamics and genome stability. However, our current understanding of 3D genome organization does not include PCH domains because of technical challenges associated with repetitive sequences enriched in PCH genomic regions. We investigated the 3D architecture of Drosophila melanogaster PCH domains and their spatial associations with the euchromatic genome by developing a novel analysis method that incorporates genome-wide Hi-C reads originating from PCH DNA.
View Article and Find Full Text PDFTrans-homolog interactions have been studied extensively in Drosophila, where homologs are paired in somatic cells and transvection is prevalent. Nevertheless, the detailed structure of pairing and its functional impact have not been thoroughly investigated. Accordingly, we generated a diploid cell line from divergent parents and applied haplotype-resolved Hi-C, showing that homologs pair with varying precision genome-wide, in addition to establishing trans-homolog domains and compartments.
View Article and Find Full Text PDFGenome organization involves cis and trans chromosomal interactions, both implicated in gene regulation, development, and disease. Here, we focus on trans interactions in Drosophila, where homologous chromosomes are paired in somatic cells from embryogenesis through adulthood. We first address long-standing questions regarding the structure of embryonic homolog pairing and, to this end, develop a haplotype-resolved Hi-C approach to minimize homolog misassignment and thus robustly distinguish trans-homolog from cis contacts.
View Article and Find Full Text PDFX inactivation presents two longstanding puzzles: the counting and choice of X chromosomes. Here, we consider counting and choice in the context of pairing, both of the X and of the autosomes.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2019
We demonstrate that the upconversion nanoparticles (UCNPs) fluoresce 50 times more on a gold (Au) coated Cicada wing. UCNPs are attractive bioimaging, and therapeutic materials as it is excited in the infrared, limited only by the low fluorescence quantum yield. Here, a plasmonic effect, coupled with an anti-reflecting (AR) Cicada wing substrate coated with Au is demonstrated to enhance the fluorescence of the UCNPs.
View Article and Find Full Text PDFA hybrid upconversion nanoparticle (UCNP)-graphene composite is demonstrated as a high-sensitivity and high-gain photodetector. The 980 nm multiphoton absorbing UCNPs are used as the photoabsorber, and optimized graphene is used as an efficient charge transporter. Although this device class is in its infancy, we show how critical engineering of the UCNPs, with a silica (SiO2) shell, helps to couple it optically with graphene to get a superior device.
View Article and Find Full Text PDFChromosome organization is crucial for genome function. Here, we present a method for visualizing chromosomal DNA at super-resolution and then integrating Hi-C data to produce three-dimensional models of chromosome organization. Using the super-resolution microscopy methods of OligoSTORM and OligoDNA-PAINT, we trace 8 megabases of human chromosome 19, visualizing structures ranging in size from a few kilobases to over a megabase.
View Article and Find Full Text PDFOligoSTORM and OligoDNA-PAINT meld the Oligopaint technology for fluorescent in situ hybridization (FISH) with, respectively, Stochastic Optical Reconstruction Microscopy (STORM) and DNA-based Point Accumulation for Imaging in Nanoscale Topography (DNA-PAINT) to enable in situ single-molecule super-resolution imaging of nucleic acids. Both strategies enable ≤20 nm resolution and are appropriate for imaging nanoscale features of the genomes of a wide range of species, including human, mouse, and fruit fly (Drosophila).
View Article and Find Full Text PDFFollowing DNA replication, sister chromatids must stay connected for the remainder of the cell cycle in order to ensure accurate segregation in the subsequent cell division. This important function involves an evolutionarily conserved protein complex known as cohesin; any loss of cohesin causes premature sister chromatid separation in mitosis. Here, we examined the role of cohesin in sister chromatid cohesion prior to mitosis, using fluorescence in situ hybridization (FISH) to assay the alignment of sister chromatids in interphase Drosophila cells.
View Article and Find Full Text PDFThe presence of maternal and paternal homologs appears to be much more than just a doubling of genetic material. We know this because genomes have evolved elaborate mechanisms that permit homologous regions to sense and then respond to each other. One way in which homologs communicate is to come into contact and, in fact, Dipteran insects such as Drosophila excel at this task, aligning all pairs of maternal and paternal chromosomes, end-to-end, in essentially all somatic tissues throughout development.
View Article and Find Full Text PDFAn unexpectedly large number of human autosomal genes are subject to monoallelic expression (MAE). Our analysis of 4,227 such genes uncovers surprisingly high genetic variation across human populations. This increased diversity is unlikely to reflect relaxed purifying selection.
View Article and Find Full Text PDFUltraconserved elements (UCEs) are strongly depleted from segmental duplications and copy number variations (CNVs) in the human genome, suggesting that deletion or duplication of a UCE can be deleterious to the mammalian cell. Here we address the process by which CNVs become depleted of UCEs. We begin by showing that depletion for UCEs characterizes the most recent large-scale human CNV datasets and then find that even newly formed de novo CNVs, which have passed through meiosis at most once, are significantly depleted for UCEs.
View Article and Find Full Text PDFHomolog pairing, which plays a critical role in meiosis, poses a potential risk if it occurs in inappropriate tissues or between nonallelic sites, as it can lead to changes in gene expression, chromosome entanglements, and loss-of-heterozygosity due to mitotic recombination. This is particularly true in Drosophila, which supports organismal-wide pairing throughout development. Discovered over a century ago, such extensive pairing has led to the perception that germline pairing in the adult gonad is an extension of the pairing established during embryogenesis and, therefore, differs from the mechanism utilized in most species to initiate pairing specifically in the germline.
View Article and Find Full Text PDFThe binding of neurotrophins to tropomyosin receptor kinase receptors initiates several signaling pathways, including the activation of phospholipase C-γ, which promotes the release of diacylglycerol and inositol 1,4,5-trisphosphate (IP(3)). In addition to recycling back to inositol, IP(3) serves as a precursor for the synthesis of higher phosphorylated inositols, such as inositol 1,3,4,5,6-pentakisphosphate (IP(5)) and inositol hexakisphosphate (IP(6)). Previous studies on the effect of neurotrophins on inositol signaling were limited to the analysis of IP(3) and its dephosphorylation products.
View Article and Find Full Text PDFType II topoisomerases are essential ATP-dependent homodimeric enzymes required for transcription, replication, and chromosome segregation. These proteins alter DNA topology by generating transient enzyme-linked double-strand breaks for passage of one DNA strand through another. The central role of type II topoisomerases in DNA metabolism has made these enzymes targets for anticancer drugs.
View Article and Find Full Text PDFThe pairing of homologous chromosomes is a fundamental feature of the meiotic cell. In addition, a number of species exhibit homolog pairing in nonmeiotic, somatic cells as well, with evidence for its impact on both gene regulation and double-strand break (DSB) repair. An extreme example of somatic pairing can be observed in Drosophila melanogaster, where homologous chromosomes remain aligned throughout most of development.
View Article and Find Full Text PDFHomologous chromosomes are paired in somatic cells of Drosophila melanogaster. This pairing can lead to transvection, which is a process by which the proximity of homologous genes can lead to a change in gene expression. At the yellow gene, transvection is the basis for several examples of intragenic complementation involving the enhancers of one allele acting in trans on the promoter of a paired second allele.
View Article and Find Full Text PDFIn Drosophila melanogaster, widely used mitotic recombination-based strategies generate mosaic flies with positive readout for only one daughter cell after division. To differentially label both daughter cells, we developed the twin spot generator (TSG) technique, which through mitotic recombination generates green and red twin spots that are detectable after the first cell division as single cells. We propose wide applications of TSG to lineage and genetic mosaic studies.
View Article and Find Full Text PDFUltraconserved elements (UCEs) are sequences that are identical between reference genomes of distantly related species. As they are under negative selection and enriched near or in specific classes of genes, one explanation for their ultraconservation may be their involvement in important functions. Indeed, many UCEs can drive tissue-specific gene expression.
View Article and Find Full Text PDFHere we describe a simple method for generating donor vectors suitable for targeted transgenesis via recombinase-mediated cassette exchange (RMCE) using the PhiC31 integrase. This PCR-based strategy employs small attB "tails" on the primers used to amplify a sequence of interest, permitting the rapid creation of transgenes for in vivo analysis.
View Article and Find Full Text PDFStudies from diverse organisms show that distinct interchromosomal interactions are associated with many developmental events. Despite recent advances in uncovering such phenomena, our understanding of how interchromosomal interactions are initiated and regulated is incomplete. During the maternal-to-zygotic transition (MZT) of Drosophila embryogenesis, stable interchromosomal contacts form between maternal and paternal homologous chromosomes, a phenomenon known as somatic homolog pairing.
View Article and Find Full Text PDFHomolog pairing refers to the alignment and physical apposition of homologous chromosomal segments. Although commonly observed during meiosis, homolog pairing also occurs in nonmeiotic cells of several organisms, including humans and Drosophila. The mechanism underlying nonmeiotic pairing, however, remains largely unknown.
View Article and Find Full Text PDFThe many reports of trans interactions between homologous as well as nonhomologous loci in a wide variety of organisms argue that such interactions play an important role in gene regulation. The yellow locus of Drosophila is especially useful for investigating the mechanisms of trans interactions due to its ability to support transvection and the relative ease with which it can be altered by targeted gene replacement. In this study, we exploit these aspects of yellow to further our understanding of cis as well as trans forms of enhancer-promoter communication.
View Article and Find Full Text PDF