Background: p63 is a transcription factor with intrinsic pioneer factor activity and pleiotropic functions. Transforming growth factor β (TGFβ) signaling via activation and cooperative action of canonical, SMAD, and non-canonical, MAP-kinase (MAPK) pathways, elicits both anti- and pro-tumorigenic properties, including cell stemness and invasiveness. TGFβ activates the ΔNp63 transcriptional program in cancer cells; however, the link between TGFβ and p63 in unmasking the epigenetic landscape during tumor progression allowing chromatin accessibility and gene transcription, is not yet reported.
View Article and Find Full Text PDFBackground: The platelet-derived growth factor (PDGF) family of ligands exerts their cellular effects by binding to α- and β-tyrosine kinase receptors (PDGFRα and PDGFRβ, respectively). SUMOylation is an important posttranslational modification (PTM) which regulates protein stability, localization, activation and protein interactions. A mass spectrometry screen has demonstrated SUMOylation of PDGFRα.
View Article and Find Full Text PDFBMP signaling has been found to have tumor-promoting as well as tumor-suppressing effects in different types of tumors. In this study, we investigated the effects of BMP signaling and of BMP inhibitors on ovarian cancer (OC) cells in vitro and in vivo. High expression of BMP receptor 2 (BMPR2) correlated with poor overall survival of OC patients in the TCGA dataset.
View Article and Find Full Text PDFDysregulated bone morphogenetic protein (BMP) signaling in endothelial cells (ECs) is implicated in vascular diseases such as pulmonary arterial hypertension (PAH). Here, we showed that the transcription factor ATOH8 was a direct target of SMAD1/5 and was induced in a manner dependent on BMP but independent of Notch, another critical signaling pathway in ECs. In zebrafish and mice, inactivation of did not cause an arteriovenous malformation-like phenotype, which may arise because of dysregulated Notch signaling.
View Article and Find Full Text PDFHyaluronan and its major receptor CD44 are ubiquitously distributed. They have important structural as well as signaling roles, regulating tissue homeostasis, and their expression levels are tightly regulated. In addition to signaling initiated by the interaction of the intracellular domain of CD44 with cytoplasmic signaling molecules, CD44 has important roles as a co-receptor for different types of receptors of growth factors and cytokines.
View Article and Find Full Text PDFTranslocation of full-length or fragments of receptors to the nucleus has been reported for several tyrosine kinase receptors. In this paper, we show that a fraction of full-length cell surface platelet-derived growth factor (PDGF) receptor β (PDGFRβ) accumulates in the nucleus at the chromatin and the nuclear matrix after ligand stimulation. Nuclear translocation of PDGFRβ was dependent on PDGF-BB-induced receptor dimerization, clathrin-mediated endocytosis, β-importin, and intact Golgi, occurring in both normal and cancer cells.
View Article and Find Full Text PDFTransforming growth factor-β (TGF-β) is a pluripotent cytokine that regulates cell fate and plasticity in normal tissues and tumors. The multifunctional cellular responses evoked by TGF-β are mediated by the canonical SMAD pathway and by noncanonical pathways, including mitogen-activated protein kinase (MAPK) pathways and the phosphatidylinositol 3'-kinase (PI3K)-protein kinase B (AKT) pathway. We found that TGF-β activated PI3K in a manner dependent on the activity of the E3 ubiquitin ligase tumor necrosis factor receptor-associated factor 6 (TRAF6).
View Article and Find Full Text PDFThe p53 family of transcription factors includes p63, which is a master regulator of gene expression in epithelial cells. Determining whether p63 is tumor-suppressive or tumorigenic is complicated by isoform-specific and cellular context-dependent protein associations, as well as antagonism from mutant p53. ΔNp63 is an amino-terminal-truncated isoform, that is, the predominant isoform expressed in cancer cells of epithelial origin.
View Article and Find Full Text PDFTransitory phenotypic changes such as the epithelial-mesenchymal transition (EMT) help embryonic cells to generate migratory descendants that populate new sites and establish the distinct tissues in the developing embryo. The mesenchymal descendants of diverse epithelia also participate in the wound healing response of adult tissues, and facilitate the progression of cancer. EMT can be induced by several extracellular cues in the microenvironment of a given epithelial tissue.
View Article and Find Full Text PDFBone morphogenetic protein (BMP) signaling exerts paradoxical roles in pluripotent stem cells (PSCs); it sustains self-renewal of mouse embryonic stem cells (ESCs), while it induces differentiation in other PSCs, including human ESCs. Here, we revisit the roles of BMP-4 using mouse ESCs (mESCs) in naive and primed states. SMAD1 and SMAD5, which transduce BMP signals, recognize enhancer regions together with KLF4 and KLF5 in naive mESCs.
View Article and Find Full Text PDFMembers of the transforming growth factor β (TGFβ) family initiate cellular responses by binding to TGFβ receptor type II (TβRII) and type I (TβRI) serine/threonine kinases, whereby Smad2 and Smad3 are phosphorylated and activated, promoting their association with Smad4. We report here that TβRI interacts with the SH3 domains of the adaptor protein CIN85 in response to TGFβ stimulation in a TRAF6-dependent manner. Small interfering RNA-mediated knockdown of CIN85 resulted in accumulation of TβRI in intracellular compartments and diminished TGFβ-stimulated Smad2 phosphorylation.
View Article and Find Full Text PDFSensitive detection of protein interactions and post-translational modifications of native proteins is a challenge for research and diagnostic purposes. A method for this, which could be used in point-of-care devices and high-throughput screening, should be reliable, cost effective and robust. To achieve this, here we design a method (proxHCR) that combines the need for proximal binding with hybridization chain reaction (HCR) for signal amplification.
View Article and Find Full Text PDFGrowth factors, such as platelet-derived growth factor BB (PDGF-BB) and transforming growth factor β (TGFβ), are key regulators of cellular functions, including proliferation, migration, and differentiation. Growth factor signaling is modulated by context-dependent cross-talk between different signaling pathways. We demonstrate in this study that PDGF-BB induces phosphorylation of Smad2, a downstream mediator of the canonical TGFβ pathway, in primary dermal fibroblasts.
View Article and Find Full Text PDFPlatelet-derived growth factor (PDGF) isoforms and PDGF receptors have important functions in the regulation of growth and survival of certain cell types during embryonal development and e.g. tissue repair in the adult.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
August 2013
The receptors for platelet-derived growth factor (PDGF) and stem cell factor (SCF) are members of the type III class of PTK receptors, which are characterized by five Ig-like domains extracellularly and a split kinase domain intracellularly. The receptors are activated by ligand-induced dimerization, leading to autophosphorylation on specific tyrosine residues. Thereby the kinase activities of the receptors are activated and docking sites for downstream SH2 domain signal transduction molecules are created; activation of these pathways promotes cell growth, survival, and migration.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
March 2014
Platelet-derived growth factor (PDGF) is a family of mesenchymal mitogens with important functions during the embryonal development and in the control of tissue homeostasis in the adult. The PDGF isoforms exert their effects by binding to α-and β-tyrosine kinase receptors. Overactivity of PDGF signaling has been linked to the development of certain malignant and non-malignant diseases, including atherosclerosis and various fibrotic diseases.
View Article and Find Full Text PDFTransforming growth factor-β (TGFβ) suppresses tumor formation since it inhibits cell growth and promotes apoptosis. However, in advanced cancers TGFβ elicits tumor promoting effects through its ability to induce epithelial-mesenchymal transition (EMT) which enhances invasiveness and metastasis; in addition, TGFβ exerts tumor promoting effects on non-malignant cells of the tumor, including suppression of immune surveillance and stimulation of angiogenesis. TGFβ promotes EMT by transcriptional and posttranscriptional regulation of a group of transcription factors that suppresses epithelial features, such as expression of components of cell junctions and polarity complexes, and enhances mesenchymal features, such as production of matrix molecules and several cytokines and growth factors that stimulate cell migration.
View Article and Find Full Text PDFTransforming growth factor-β (TGFβ) is the prototype for a large family of pleiotropic factors that signal via heterotetrameric complexes of type I and type II serine/threonine kinase receptors. Important intracellular mediators of TGFβ signaling are members of the Smad family. Smad2 and 3 are activated by C-terminal receptor-mediated phosphorylation, whereafter they form complexes with Smad4 and are translocated to the nucleus where they, in cooperation with other transcription factors, co-activators and co-repressors, regulate the transcription of specific genes.
View Article and Find Full Text PDFPericytes are smooth muscle-like cells found in close contact with the endothelium in capillaries, where they regulate the morphology and function of the vessels. During vessel formation, platelet-derived growth factor-BB (PDGF-BB) is required for the recruitment and differentiation of pericytes. Tumor vessels display abnormal morphology and increased endothelial proliferation, resulting in leaky, tortuous vessels that are often poorly perfused.
View Article and Find Full Text PDFMembers of the transforming growth factor-beta (TGF-beta) family have important roles during embryogenesis, as well as in the control of tissue homeostasis in the adult. They exert their cellular effects via binding to serine/threonine kinase receptors. Members of the Smad family of transcription factors are important intracellular messengers, and recent studies have shown that the ubiquitin ligase TRAF6 mediates other specific signals.
View Article and Find Full Text PDFNat Rev Mol Cell Biol
May 2008
The long-awaited European Research Council (ERC), which receives money from the research budget of the European Union and will finance fundamental science for Europe's scientists, has finally been established. With a focus on excellence, calls for both young and experienced scientists and an average budget of \[euro]1 billion per year, the ERC will have the opportunity to give basic research in Europe a significant boost.
View Article and Find Full Text PDFMany solid tumours show an increased interstitial fluid pressure (IFP), which forms a barrier to transcapillary transport. This barrier is an obstacle in tumour treatment, as it results in inefficient uptake of therapeutic agents. There are a number of factors that contribute to increased IFP in the tumour, such as vessel abnormalities, fibrosis and contraction of the interstitial matrix.
View Article and Find Full Text PDFMany aspects of cell behavior, such as growth, motility, differentiation, and apoptosis, are regulated by signals cells receive from their environment. Such signals are important, e.g.
View Article and Find Full Text PDF