Defluorination reactions are increasingly vital due to the extensive use of organofluorine compounds with robust carbon-fluorine (C-F) bonds; particularly, the efficient defluorination of widespread and persistent per- and polyfluoroalkyl substances under mild conditions is crucial due to their accumulation in the environment and human body. Herein, we demonstrate that surface-modified silicate of pronounced proton affinity can confine active hydrogen (•H) onto nanoscale zerovalent iron (nZVI) by withdrawing electrons from nZVI to react with bound protons, generating confined active hydrogen (•H) for efficient defluorination under ambient conditions. The exposed silicon cation (Si) of silicate functions as a Lewis acid site to activate the C-F bond by forming Si.
View Article and Find Full Text PDFIntroduction And Hypothesis: The aim of the study was to compare clinical outcomes when using robotic-assisted sacral hysterocolpopexy (RASC) and vaginal surgery using the Uphold™ Vaginal Support System mesh for pelvic organ prolapse repair.
Methods: This was a nonrandomized, prospective, multicenter study in which 72 women underwent RASC, and 73 Uphold™ surgery, for apical prolapse (POP-Q C ≥ stage II). Anatomical outcomes were assessed using the Pelvic Organ Prolapse Quantification (POP-Q) system.
Effective targeting of somatic cancer mutations to enhance the efficacy of cancer immunotherapy requires an individualized approach. Autogene cevumeran is a uridine messenger RNA lipoplex-based individualized neoantigen-specific immunotherapy designed from tumor-specific somatic mutation data obtained from tumor tissue of each individual patient to stimulate T cell responses against up to 20 neoantigens. This ongoing phase 1 study evaluated autogene cevumeran as monotherapy (n = 30) and in combination with atezolizumab (n = 183) in pretreated patients with advanced solid tumors.
View Article and Find Full Text PDFTerrestrial dissolved organic matter (DOM) is potentially reactive and, upon entering lake ecosystems, can be readily degraded to low-molecular-weight organic matter and dissolved CO. However, to date, there has been limited research on the links between long-term variation in the composition of DOM and CO emissions from lakes. Lake Taihu is a large, shallow, and hyper-eutrophic lake where DOM composition is strongly influenced by inputs from the rivers draining cultivated and urbanized landscapes.
View Article and Find Full Text PDFThe persistence and ecological impact of per- and poly-fluoroalkyl substances (PFAS) in water sources necessitate effective and energy-efficient treatment solutions. This study introduces a novel approach using cerium dioxide (CeO) electrodes enhanced with oxygen vacancy (O) to catalyze the defluorination of PFAS. By leveraging the unique affinity between cerium and fluorine-containing species, our approach enables adsorptive preconcentration and catalytic degradation at low oxidation potentials (1.
View Article and Find Full Text PDFRationale And Objectives: To develop an automatic deep-radiomics framework that diagnoses and stratifies prostate cancer in patients with prostate-specific antigen (PSA) levels between 4 and 10 ng/mL.
Materials And Methods: A total of 1124 patients with histological results and PSA levels between 4 and 10 ng/mL were enrolled from one public dataset and two local institutions. An nnUNet was trained for prostate masks, and a feature extraction module identified suspicious lesion masks.
Nutrient recovery from aquaculture sludge is vital for promoting hydroponic plant growth and achieving near-zero solid waste discharge in aquaponic systems. Modified biological aerated filters (MBAFs) are promising because of the dual capabilities of aquaculture sludge collection and aerobic mineralization. However, the bioconversion kinetics, which is indirectly related to the packed media, need to be improved.
View Article and Find Full Text PDFRationale And Objectives: To construct and validate a clinical-radiomics model based on radiomics features extracted from two-stage multimodal ultrasound and clinicopathologic information for early predicting pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer patients treated with NAC.
Materials And Methods: Consecutive women with biopsy-proven breast cancer undergoing multimodal US pretreatment and after two cycles of NAC and followed by surgery between January 2014 and November 2023 were retrospectively collected for clinical-radiomics model construction (n = 274) and retrospective test (n = 134). The predictive performance of it was further tested in a subsequent prospective internal test set recruited between January 2024 to July 2024 (n = 76).
Hypoxia-inducible factor prolyl hydroxylase (PHD) inhibitors have been approved for treating renal anemia yet have failed clinical testing for inflammatory bowel disease because of a lack of efficacy. Here we used a multimodel multimodal generative artificial intelligence platform to design an orally gut-restricted selective PHD1 and PHD2 inhibitor that exhibits favorable safety and pharmacokinetic profiles in preclinical studies. ISM012-042 restores intestinal barrier function and alleviates gut inflammation in multiple experimental colitis models.
View Article and Find Full Text PDFOne new polyketide asperfuranone D (1), four new sesquiterpenes derivatives aspergillone C-F (2-5) and three known compounds (6-8) were successfully isolated from Aspergillus nidulans LZ8, a fungicolous fungi from the macrofungal Ganoderma lingzhi. The structures of these compounds were elucidated by extensive spectroscopic analyses including ultraviolet-visible spectroscopy (UV), mass spectrometry (MS), nuclear magnetic resonance (NMR), and electronic circular dichroism (ECD) calculation. In addition, the anti-inflammatory activities of the new compounds were evaluated using LPS-induced RAW 264.
View Article and Find Full Text PDFBackground: Currently, validated biomarkers for assessing hemorrhagic transformation (HT) after intravenous thrombolysis (IVT) are lacking. We aimed to validate a test combining GFAP (glial fibrillary acidic protein) and UCH-L1 (ubiquitin C-terminal hydrolase-L1) to indicate the absence of HT after IVT.
Methods: We prospectively enrolled consecutive patients with stroke treated with IVT from 16 hospitals.
With the upgrading and obsoleting of electric refrigeration equipment, significant amounts of waste hydrochlorofluorocarbon (HCFCs) refrigerants are being generated, bringing serious ozone-depleting and global warming effects. HCFCs, containing chlorine and fluorine, have the potential to be converted into acids by mineralization. Hydrothermal technology possesses a tightly sealed environment and high thermal efficiency, providing significant advantages in treating volatile HCFCs.
View Article and Find Full Text PDFThe recent worldwide outbreaks of mpox prioritize the development of a safe and effective mRNA vaccine. The contemporary mpox virus (MPXV) exhibits changing virological and epidemiological features, notably affecting populations already vulnerable to human immunodeficiency virus (HIV). Herein, we profile the immunogenicity of AR-MPXV5, a penta-component mRNA vaccine targeting five specific proteins (M1R, E8L, A29L, A35R, and B6R) from the representative contemporary MPXV clade II strain, in both naive and simian immunodeficiency virus (SIV)-infected nonhuman primates.
View Article and Find Full Text PDFThe optimization of surface irrigation variables, i.e., the selection of the optimal combination of the inflow rate per unit width (q) and cutoff time (tco), is essential for obtaining high performance.
View Article and Find Full Text PDFProton exchange membrane fuel cells (PEMFCs) are recognized as promising next-generation energy sources for automotive applications. The development of efficient, durable, and low-cost electrocatalysts to enhance the oxygen reduction reaction (ORR) kinetics is crucial. Herein, we report the synthesis of Pt@C/F-COOH catalysts via the pyrolysis and HNO oxidation of the carbon support, followed by the growth of Pt nanoparticles through reduction.
View Article and Find Full Text PDFBackground: Tracking the emergence, introduction and spread of SARS-CoV-2 variants of concern are essential for informing public health strategies. In 2021, Cambodia faced two major epidemic waves of SARS-CoV-2 triggered by the successive rise of the Alpha and Delta variants.
Methods: Phylodynamic analysis of 1,163 complete SARS-CoV-2 genomes from Cambodia, along with global sequences, were conducted between February and September 2021 to infer viral introductions, molecular epidemiology and population dynamics.
Perfluorinated compounds (PFCs), recognized as persistent organic pollutants, resist degradation in the environment due to the high bond energy of the C-F. Increasing carrier density via adopting electrostatic self-assembly strategy has been shown to effectively cleave C-F bonds. In this work, a unique S-scheme structure was fabricated by combining oppositely charged semiconductors, TiO and ReS, through electrostatic self-assembly.
View Article and Find Full Text PDFPolyfluoroalkyl and perfluoroalkyl substances (PFASs) are found in many everyday consumer products, often because of their high thermal and chemical stabilities, as well as their hydrophobic and oleophobic properties. However, the inert carbon-fluorine (C-F) bonds that give PFASs their properties also provide resistance to decomposition through defluorination, leading to long-term persistence in the environment, as well as in the human body, raising substantial safety and health concerns. Despite recent advances in non-incineration approaches for the destruction of functionalized PFASs, processes for the recycling of perfluorocarbons (PFCs) as well as polymeric PFASs such as polytetrafluoroethylene (PTFE) are limited to methods that use either elevated temperatures or strong reducing reagents.
View Article and Find Full Text PDFPolyfluoroaryl ethers represent an important framework of biologically active molecules and materials. Owing to the strong bond dissociation energy of C-F bond, selectivity and other issues, transition metal-catalyzed synthesis of polyfluoroaryl ethers from perfluoroarenes via the activation of C-F bond is challenging and underdeveloped, as compared to the well-documented C-O bond formation starting from aryl iodides, aryl bromides or aryl chlorides. Herein, an unprecedented Pd-catalyzed defluorinative etherification for the synthesis of polyfluoroaryl ether skeletons using hydrobenzoxazoles as phenol surrogate, has been reported.
View Article and Find Full Text PDFAlthough immunotherapy has revolutionized cancer treatment, its efficacy is affected by multiple factors, particularly those derived from the complexity and heterogeneity of the tumor-immune microenvironment (TIME). Strategies that simultaneously and synergistically engage multiple immune cells in TIME remain highly desirable but challenging. Herein, we report a multimodal and programmable platform that enables the integration of multiple therapeutic modules into single agents for tumor-targeted co-engagement of multiple immune cells within TIME.
View Article and Find Full Text PDFTo investigate the ocean contamination caused by polycyclic aromatic hydrocarbons (PAHs), UiO-67/perfluorooctanoic acid (UiO-67/PFOA) was synthesized through solvent-assisted ligand incorporation method. The UiO-67/PFOA was then served as an adsorbent in headspace solid-phase microextraction (HS-SPME) technology for collecting and concentrating trace PAHs. The addition of the PFOA improved the hydrophobicity and stability of the UiO-67/PFOA coating, and the C-F functional group in UiO-67/PFOA could form the pseudo hydrogen bonding with the CH on the benzene ring of PAHs, which endowed the UiO-67/PFOA with 1.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Selective C-F bond activation through a radical pathway in the presence of multiple C-H bonds remains a formidable challenge, owing to the extraordinarily strong bond strength of the C-F bond. By the aid of density functional theory calculations, we disclose an innovative concerted electron-fluoride transfer mechanism, harnessing the unique reactivity of Lewis base-boryl radicals to selectively activate the resilient C-F bonds in fluoroalkanes. This enables the direct abstraction of a fluorine atom and subsequent generation of an alkyl radical, thus expanding the boundaries of halogen atom transfer reactions.
View Article and Find Full Text PDF