Chitin, the second most abundant biopolymer after cellulose, is an important resource for biosourced materials. The global demand for chitin is rapidly increasing, however, the majority of industrial chitin is sourced from crustacean shells, which may be less accessible in regions without seafood waste. Therefore, it is crucial to explore alternative chitin sources, such as those derived from beetles and other arthropods.
View Article and Find Full Text PDFChitosan, a natural polysaccharide, has attracted considerable attention as an environmentally friendly and highly efficient adsorbent for dye removal. It is usually produced by deacetylation or partial deacetylation of chitin. However, conventional sources of chitin and chitosan are limited, prompting the need for alternative sources with improved adsorption capabilities.
View Article and Find Full Text PDFPolymer gels are comprised of a three-dimensional, cross-linked network that can typically withstand the mechanical deformation associated with both swelling and de-swelling. Thus, gels can be designed with smart behaviors that require both stress generation and dissipation, making them well-suited to many applications including membrane technology, water capture devices, and drug delivery systems. In contrast to the fully swelled equilibrium state, limited research characterizes the unsteady-state swelling regime prior to equilibrium.
View Article and Find Full Text PDFPhotopolymerization induced phase separation (PIPS) is a platform capable of creating heterogeneous materials from initially miscible resin solutions, where both the reaction's governing thermodynamics and kinetics significantly influence the resulting phase composition and morphology. Here, PIPS is used to develop materials in a single photopolymerization step that are hydrophobic on one face and hydrophilic on the other. These two faces possess a water contact angle difference of 50°, bridged by a bulk-scale chemical gradient.
View Article and Find Full Text PDFObjectives: Heterogeneity and phase separation during network polymerization is a major issue contributing to the failure of dental adhesives. This study investigates how the ratio of hydrophobic crosslinkers to hydrophilic comonomer (C/H ratio), as well as cosolvent fraction (ethanol/water) influences the degree of heterogeneity and proclivity for phase separation in a series of model adhesive formulations.
Methods: Twelve formulations were investigated, with 4 different C/H ratios (7:1, 2.