Chronic hypoxia induces sequential abnormalities in oxygen metabolism (for example, oxidative stress, nitrosative stress, advanced glycation, carbonyl stress, endoplasmic reticulum stress) in the kidneys of individuals with diabetes. Identification of these abnormalities improves our understanding of therapeutic benefits that can be achieved with antihypertensive agents, the control of hyperglycemia and/or hyperinsulinemia and the dietary correction of obesity. Key to the body's defense against hypoxia is hypoxia-inducible factor, the activity of which is modulated by prolyl hydroxylases (PHDs)-oxygen sensors whose inhibition may prove therapeutic.
View Article and Find Full Text PDFBackground: Chronic renal hypoxia is suspected to play a pathogenic role in the genesis of diabetic nephropathy (DN). Cobalt enhances the activity of the hypoxia-inducible factor (HIF), a key factor in the defence against hypoxia. Its long-term effect on DN is evaluated.
View Article and Find Full Text PDFA 37-year-old patient underwent two successive renal transplantations 7 months apart. He remained dialysis dependent. Early biopsy of both grafts revealed widespread calcium oxalate deposition suggestive of acute oxalate nephropathy.
View Article and Find Full Text PDF