Numerical simulations of the tropical mesoscales often exhibit a self-reinforcing feedback between cumulus convection and shallow circulations, which leads to the self-aggregation of clouds into large clusters. We investigate whether this basic feedback can be adequately captured by large-eddy simulations (LESs). To do so, we simulate the non-precipitating, cumulus-topped boundary layer of the canonical "BOMEX" case over a range of numerical settings in two models.
View Article and Find Full Text PDFVegetation and atmosphere processes are coupled through a myriad of interactions linking plant transpiration, carbon dioxide assimilation, turbulent transport of moisture, heat and atmospheric constituents, aerosol formation, moist convection, and precipitation. Advances in our understanding are hampered by discipline barriers and challenges in understanding the role of small spatiotemporal scales. In this perspective, we propose to study the atmosphere-ecosystem interaction as a continuum by integrating leaf to regional scales (multiscale) and integrating biochemical and physical processes (multiprocesses).
View Article and Find Full Text PDFGlobal warming increases the number and severity of deadly heatwaves. Recent heatwaves often coincided with soil droughts that intensify air temperature but lower air humidity. Since lowering air humidity may reduce human heat stress, the net impact of soil desiccation on the morbidity and mortality of heatwaves remains unclear.
View Article and Find Full Text PDFThe radiative transfer equations are well known, but radiation parametrizations in atmospheric models are computationally expensive. A promising tool for accelerating parametrizations is the use of machine learning techniques. In this study, we develop a machine learning-based parametrization for the gaseous optical properties by training neural networks to emulate a modern radiation parametrization (RRTMGP).
View Article and Find Full Text PDFThe Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative-convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate.
View Article and Find Full Text PDF