Publications by authors named "C van Galen"

We report developmental details of a high-sensitivity Stark absorption spectrometer featuring a laser-driven light source. The light source exhibits intensity fluctuations of ∼0.3% over timescales ranging from 1 min to 12 h, minimal drift (≤0.

View Article and Find Full Text PDF

Flavin absorption spectra encode molecular details of the flavin's local environment through coupling of local electric fields with the chromophore's charge redistribution upon optical excitation. Translating experimentally measured field-tuned transition energies to local electric field magnitudes and directions across a wide range of field magnitudes requires that the charge redistribution be independent of the local field. We have measured the charge redistribution upon optical excitation of the derivatized flavin TPARF in the non-hydrogen-bonding, nonpolar solvent toluene, with and without a tridentate hydrogen-bonding ligand, DBAP, using electronic Stark spectroscopy.

View Article and Find Full Text PDF

Under the mentor effect, compatible heterospecific pollen transfer induces self-pollen germination in otherwise self-incompatible plants. The mentor effect could be considered a novel mode of reproductive interference if it negatively impacts fitness. Yet to date, this phenomenon has predominately been investigated under experimental conditions rather than in situ.

View Article and Find Full Text PDF

From the outset, canonical electron transferring flavoproteins (ETFs) earned a reputation for containing modified flavin. We now show that modification occurs in the recently recognized bifurcating (Bf) ETFs as well. In Bf ETFs, the 'electron transfer' (ET) flavin mediates single electron transfer via a stable anionic semiquinone state, akin to the FAD of canonical ETFs, whereas a second flavin mediates bifurcation (the Bf FAD).

View Article and Find Full Text PDF

Pollinators at high elevations face multiple threats from climate change including heat stress, failure to phenological match advancing flower resources and competitive pressure from range-expanding species of lower elevations. We conducted long-term multi-site surveys of alpine bumble bees to determine how phenology of range-stable and range-expanding species is responding to climate change. We ask whether bumble bee responses generate mismatches with floral resources, and whether these mismatches in turn promote community disruption and potential species replacement.

View Article and Find Full Text PDF