Introduction: Positive end-expiratory pressure (PEEP) and prone positioning can improve gas exchange by promoting uniform lung aeration. However, elevated ventilation pressures may increase intracranial pressure (ICP) and disrupt cerebral autoregulation. This study investigated the effects of PEEP on ICP and cerebral autoregulation in a porcine model with healthy lungs and normal ICP, comparing prone and supine positions.
View Article and Find Full Text PDFAt present, primary hyperparathyroidism is most often discovered in an asymptomatic patient, but can sometimes be revealed by a renal or bone complications. In all cases, a full work-up is recommended, with assessment of renal function (glomerular filtration rate), 24-hour calciuria, screening for risk factors for lithiasis, and renal and urinary tract imaging (ultrasound or CT scan) to look for stones or nephrocalcinosis. Bone densitometry, with measurements of the spine, femur and radius, is the recommended reference test for demineralization.
View Article and Find Full Text PDFPurpose Of Review: The increasing use of prone position, in intubated patients with acute respiratory distress syndrome as well as in patients with acute hypoxemic respiratory failure receiving noninvasive respiratory support, mandates a better definition and monitoring of the response to the manoeuvre. This review will first discuss the definition of the response to prone positioning, which is still largely based on its effect on oxygenation. We will then address monitoring respiratory and hemodynamic responses to prone positioning in intubated patients.
View Article and Find Full Text PDFIn cells, multiple actin networks coexist in a dynamic manner. These networks compete for a common pool of actin monomers and actin-binding proteins. Interestingly, all of these networks manage to coexist despite the strong competition for resources.
View Article and Find Full Text PDF