Publications by authors named "C Zietz"

Aseptic implant loosening is the most common reason for revision surgery after total knee replacement. This is associated with adverse biological reactions to wear debris from the articulating implant components. To predict the amount of wear debris generated in situ, standard wear testing of total knee replacement (TKR) is carried out before its clinical use.

View Article and Find Full Text PDF

Sequential cross-linked and annealed ultra-high-molecular-weight polyethylene (SX-PE) is known as a low-wear articulating partner, especially for total hip endoprostheses. Aging of polymeric materials, irrespective of if induced by shelf or in vivo life, can degrade their tribological and mechanical properties. However, changes in wear behavior of aged SX-PE liners have not been not quantified so far.

View Article and Find Full Text PDF

Metallic deposition is a commonly observed phenomenon on the surface of revised femoral heads in total hip arthroplasty and can lead to increased wear due to third bodies. In order to find out the origin and composition of the transfer material, 98 retrieved femoral heads of different materials were examined with regard to the cause of revision, localization, pattern and composition of the transfer material by energy dispersive X-ray spectroscopy. We found that in 53.

View Article and Find Full Text PDF

The antimicrobial peptide database (APD) has served the antimicrobial peptide field for 18 years. Because it is widely used in research and education, this article documents database milestones and key events that have transformed it into the current form. A comparison is made for the APD peptide statistics between 2010 and 2020, validating the major database findings to date.

View Article and Find Full Text PDF

Several retrieval studies have reported on metallic depositions on ceramic femoral heads, but the effect on the wear behavior of artificial hip joints has not been investigated in wear simulator studies. In the present study, retrieved ceramic heads with metallic depositions as third particles were tested against cross-linked ultra-high-molecular-weight polyethylene (UHMWPE) liners in a hip wear simulator. The amount of liner wear and expansion of metallic depositions on the heads were determined before and after wear testing with digital microscopy.

View Article and Find Full Text PDF