Publications by authors named "C Zarakas"

Tropical forest photosynthesis can decline at high temperatures due to (1) biochemical responses to increasing temperature and (2) stomatal responses to increasing vapor pressure deficit (VPD), which is associated with increasing temperature. It is challenging to disentangle the influence of these two mechanisms on photosynthesis in observations, because temperature and VPD are tightly correlated in tropical forests. Nonetheless, quantifying the relative strength of these two mechanisms is essential for understanding how tropical gross primary production (GPP) will respond to climate change, because increasing atmospheric CO concentration may partially offset VPD-driven stomatal responses, but is not expected to mitigate the effects of temperature-driven biochemical responses.

View Article and Find Full Text PDF

The changing risk of extreme precipitation is difficult to project. Events are rare by definition, and return periods of heavy precipitation events are often calculated assuming a stationary climate. Furthermore, ensembles of climate model projections are not large enough to fully categorize the tails of the distribution.

View Article and Find Full Text PDF

The goal of this study is to reframe the analysis and discussion of extreme heat projections to improve communication of future extreme heat risks in the United States. We combine existing data from 31 of the Coupled Model Intercomparison Project Phase 5 models to examine future exposure to extreme heat for global average temperatures of 1.5, 2, 3, and 4 °C above a preindustrial baseline.

View Article and Find Full Text PDF