Publications by authors named "C Yu Zenkova"

We propose a new approach of using carbon nanoparticles for correlation optical diagnostics of а complex scalar optical field created by scattering and diffraction of radiation off a rough surface. This surface is simulated and we generate a diffraction pattern of the amplitude and phase distribution in the far field. Carbon nanoparticles of a certain size and concentration are obtained by the bottom-up methods of hydrothermal synthesis of citric acid and urea followed by centrifugation.

View Article and Find Full Text PDF

An investigation of the influence of an evanescent wave on the dynamics of motion of erythrocytes in blood plasma is presented. Computer simulation of erythrocytes moving in an evanescent field and experimental demonstration of the forecasted motion substantiate the possibility for control of position of red blood cells in a solution. The range of velocities of transversal motion of erythrocytes due to the action of the optical force of the generated evanescent field is determined as a function of the angle of illumination of a cell by a linearly polarized wave with the azimuth of polarization 45 deg.

View Article and Find Full Text PDF

Mechanical action caused by the optical forces connected with the canonical momentum density associated with the local wavevector or Belinfante's spin angular momentum is experimentally verified. The helicity-dependent and the helicity-independent forces determined by spin momenta of different nature open attractive prospects for the use of optical structures for manipulating minute quantities of matter of importance in nanophysics, nanooptics and nanotechnologies, precision chemistry and pharmacology and in numerous other areas. Investigations in this area reveal new, extraordinary manifestations of optical forces, including the helicity-independent force caused by the transverse helicity-independent spin or vertical spin of a diagonally polarized wave, which was not observed and exploited up to recently.

View Article and Find Full Text PDF

The paper presents principal approaches to diagnosing the structure-forming skeleton of a complex optical field. Analysis of optical field singularity algorithms, depending on intensity discretization and image resolution, has been carried out. An optimal approach is chosen, which allows us to get much closer to the solution of the phase problem of localization speckle-field special points.

View Article and Find Full Text PDF

Theoretical and experimental approaches to diagnosing internal spin and orbital optical flows and the corresponding optical forces caused by these flows are offered. These approaches are based on the investigation of the motion of the particles tested in the formed optical field. The dependence of the above-mentioned forces upon the size and optical properties of the particles is demonstrated.

View Article and Find Full Text PDF